Whisper Quantized
Collection
Collection of quantized whisper models created by OpenAI
•
19 items
•
Updated
Quantized version of openai/whisper-large-v3-turbo.
This model was obtained by quantizing the weights of openai/whisper-large-v3-turbo to INT8 data type, ready for inference with vLLM >= 0.5.2.
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm.assets.audio import AudioAsset
from vllm import LLM, SamplingParams
# prepare model
llm = LLM(
model="neuralmagic/whisper-large-v3-turbo-quantized.w8a8",
max_model_len=448,
max_num_seqs=400,
limit_mm_per_prompt={"audio": 1},
)
# prepare inputs
inputs = { # Test explicit encoder/decoder prompt
"encoder_prompt": {
"prompt": "",
"multi_modal_data": {
"audio": AudioAsset("winning_call").audio_and_sample_rate,
},
},
"decoder_prompt": "<|startoftranscript|>",
}
# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.0, max_tokens=64))
print(f"PROMPT : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
This model was created with llm-compressor by running the code snippet below.
python quantize.py --model_path openai/whisper-large-v3-turbo --quant_path "output_dir/whisper-large-v3-turbo-quantized.w8a8" --calib_size 2048 --dampening_frac 0.01
import torch
import argparse
from datasets import load_dataset
from transformers import WhisperProcessor
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers.tracing import TraceableWhisperForConditionalGeneration
import os
from compressed_tensors.quantization import QuantizationArgs, QuantizationType, QuantizationStrategy, ActivationOrdering, QuantizationScheme
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str)
parser.add_argument('--quant_path', type=str)
parser.add_argument('--calib_size', type=int, default=256)
parser.add_argument('--dampening_frac', type=float, default=0.1)
parser.add_argument('--observer', type=str, default="minmax")
parser.add_argument('--save_dir', type=str, required=True)
args = parser.parse_args()
model_id = args.model_path
model = TraceableWhisperForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
torch_dtype="auto",
)
model.config.forced_decoder_ids = None
processor = WhisperProcessor.from_pretrained(model_id)
# Configure processor the dataset task.
processor.tokenizer.set_prefix_tokens(language="en", task="transcribe")
# Select calibration dataset.
DATASET_ID = "MLCommons/peoples_speech"
DATASET_SUBSET = "test"
DATASET_SPLIT = "test"
# Select number of samples for calibration. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = args.calib_size
MAX_SEQUENCE_LENGTH = 2048
dampening_frac=args.dampening_frac
actorder_arg=args.actorder
group_size=args.group_size
# Load dataset and preprocess.
ds = load_dataset(
DATASET_ID,
DATASET_SUBSET,
split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]",
trust_remote_code=True,
)
def preprocess(example):
return {
"array": example["audio"]["array"],
"sampling_rate": example["audio"]["sampling_rate"],
"text": " " + example["text"].capitalize(),
}
ds = ds.map(preprocess, remove_columns=ds.column_names)
# Process inputs.
def process(sample):
inputs = processor(
audio=sample["array"],
sampling_rate=sample["sampling_rate"],
text=sample["text"],
add_special_tokens=True,
return_tensors="pt",
)
inputs["input_features"] = inputs["input_features"].to(dtype=model.dtype)
inputs["decoder_input_ids"] = inputs["labels"]
del inputs["labels"]
return inputs
ds = ds.map(process, remove_columns=ds.column_names)
# Define a oneshot data collator for multimodal inputs.
def data_collator(batch):
assert len(batch) == 1
return {key: torch.tensor(value) for key, value in batch[0].items()}
ignore=["lm_head"]
#Recipe
recipe = [
GPTQModifier(
targets="Linear",
scheme="W8A8",
sequential_targets=["WhisperEncoderLayer", "WhisperDecoderLayer"],
ignore=ignore,
)
]
# Apply algorithms.
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
data_collator=data_collator,
)
# Save to disk compressed.
save_name = f"{model_id.split('/')[-1]}-quantized.w8a8"
save_path = os.path.join(args.save_dir, save_name)
print("Saving model:", save_path)
model.save_pretrained(save_path, save_compressed=True)
processor.save_pretrained(save_path)
The model was evaluated on LibriSpeech and Fleurs datasets using lmms-eval, via the following commands:
Librispeech:
lmms-eval \
--model=whisper_vllm \
--model_args="pretrained=neuralmagic-ent/whisper-large-v3-turbo-quantized.w8a8" \
--batch_size 64 \
--output_path <output_file_path> \
--tasks librispeech
Fleurs:
lmms-eval \
--model=whisper_vllm \
--model_args="pretrained=neuralmagic-ent/whisper-large-v3-turbo-quantized.w8a8" \
--batch_size 64 \
--output_path <output_file_path> \
--tasks fleurs
Benchmark | Split | BF16 | w8a8 | Recovery (%) |
---|---|---|---|---|
LibriSpeech (WER) | test-clean | 2.2668 | 2.263 | 100.17% |
test-other | 4.2396 | 4.3134 | 98.29% | |
Fleurs (X→en, WER) | cmn_hans_cn | 8.2384 | 8.2608 | 99.73% |
en | 4.2914 | 4.3395 | 98.90% | |
yue_hant_hk | 10.5004 | 10.5555 | 99.48% |