|
import torch |
|
import librosa |
|
import numpy as np |
|
import random |
|
import os |
|
from torch.utils.data import DataLoader |
|
from modules.audio import mel_spectrogram |
|
|
|
|
|
duration_setting = { |
|
"min": 1.0, |
|
"max": 30.0, |
|
} |
|
|
|
def to_mel_fn(wave, mel_fn_args): |
|
return mel_spectrogram(wave, **mel_fn_args) |
|
|
|
class FT_Dataset(torch.utils.data.Dataset): |
|
def __init__( |
|
self, |
|
data_path, |
|
spect_params, |
|
sr=22050, |
|
batch_size=1, |
|
): |
|
self.data_path = data_path |
|
self.data = [] |
|
for root, _, files in os.walk(data_path): |
|
for file in files: |
|
if file.endswith((".wav", ".mp3", ".flac", ".ogg", ".m4a", ".opus")): |
|
self.data.append(os.path.join(root, file)) |
|
|
|
self.sr = sr |
|
self.mel_fn_args = { |
|
"n_fft": spect_params['n_fft'], |
|
"win_size": spect_params['win_length'], |
|
"hop_size": spect_params['hop_length'], |
|
"num_mels": spect_params['n_mels'], |
|
"sampling_rate": sr, |
|
"fmin": spect_params['fmin'], |
|
"fmax": None if spect_params['fmax'] == "None" else spect_params['fmax'], |
|
"center": False |
|
} |
|
|
|
assert len(self.data) != 0 |
|
while len(self.data) < batch_size: |
|
self.data += self.data |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
idx = idx % len(self.data) |
|
wav_path = self.data[idx] |
|
try: |
|
speech, orig_sr = librosa.load(wav_path, sr=self.sr) |
|
except Exception as e: |
|
print(f"Failed to load wav file with error {e}") |
|
return self.__getitem__(random.randint(0, len(self))) |
|
if len(speech) < self.sr * duration_setting["min"] or len(speech) > self.sr * duration_setting["max"]: |
|
print(f"Audio {wav_path} is too short or too long, skipping") |
|
return self.__getitem__(random.randint(0, len(self))) |
|
if orig_sr != self.sr: |
|
speech = librosa.resample(speech, orig_sr, self.sr) |
|
|
|
wave = torch.from_numpy(speech).float().unsqueeze(0) |
|
mel = to_mel_fn(wave, self.mel_fn_args).squeeze(0) |
|
|
|
return wave.squeeze(0), mel |
|
|
|
|
|
def build_ft_dataloader(data_path, spect_params, sr, batch_size=1, num_workers=0): |
|
dataset = FT_Dataset(data_path, spect_params, sr, batch_size) |
|
dataloader = torch.utils.data.DataLoader( |
|
dataset, |
|
batch_size=batch_size, |
|
shuffle=True, |
|
num_workers=num_workers, |
|
collate_fn=collate, |
|
) |
|
return dataloader |
|
|
|
def collate(batch): |
|
batch_size = len(batch) |
|
|
|
|
|
lengths = [b[1].shape[1] for b in batch] |
|
batch_indexes = np.argsort(lengths)[::-1] |
|
batch = [batch[bid] for bid in batch_indexes] |
|
|
|
nmels = batch[0][1].size(0) |
|
max_mel_length = max([b[1].shape[1] for b in batch]) |
|
max_wave_length = max([b[0].size(0) for b in batch]) |
|
|
|
mels = torch.zeros((batch_size, nmels, max_mel_length)).float() - 10 |
|
waves = torch.zeros((batch_size, max_wave_length)).float() |
|
|
|
mel_lengths = torch.zeros(batch_size).long() |
|
wave_lengths = torch.zeros(batch_size).long() |
|
|
|
for bid, (wave, mel) in enumerate(batch): |
|
mel_size = mel.size(1) |
|
mels[bid, :, :mel_size] = mel |
|
waves[bid, : wave.size(0)] = wave |
|
mel_lengths[bid] = mel_size |
|
wave_lengths[bid] = wave.size(0) |
|
|
|
return waves, mels, wave_lengths, mel_lengths |
|
|
|
if __name__ == "__main__": |
|
data_path = "./example/reference" |
|
sr = 22050 |
|
spect_params = { |
|
"n_fft": 1024, |
|
"win_length": 1024, |
|
"hop_length": 256, |
|
"n_mels": 80, |
|
"fmin": 0, |
|
"fmax": 8000, |
|
} |
|
dataloader = build_ft_dataloader(data_path, spect_params, sr, batch_size=2, num_workers=0) |
|
for idx, batch in enumerate(dataloader): |
|
wave, mel, wave_lengths, mel_lengths = batch |
|
print(wave.shape, mel.shape) |
|
if idx == 10: |
|
break |
|
|