|
import shutil |
|
import warnings |
|
import argparse |
|
import torch |
|
import os |
|
import os.path as osp |
|
import yaml |
|
|
|
warnings.simplefilter("ignore") |
|
|
|
|
|
import random |
|
|
|
from tqdm import tqdm |
|
from modules.commons import * |
|
import time |
|
|
|
import torchaudio |
|
import librosa |
|
import torchaudio.compliance.kaldi as kaldi |
|
|
|
from hf_utils import load_custom_model_from_hf |
|
from resemblyzer import preprocess_wav, VoiceEncoder |
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
elif torch.backends.mps.is_available(): |
|
device = torch.device("mps") |
|
else: |
|
device = torch.device("cpu") |
|
|
|
from transformers import Wav2Vec2FeatureExtractor, WavLMForXVector |
|
from transformers import Wav2Vec2Processor, HubertForCTC |
|
|
|
import jiwer |
|
import string |
|
|
|
from baselines.dnsmos.dnsmos_computor import DNSMOSComputer |
|
|
|
def calc_mos(computor, audio, orin_sr): |
|
|
|
target_sr = 16000 |
|
if orin_sr != 16000: |
|
audio = librosa.resample( |
|
audio, orig_sr=orin_sr, target_sr=target_sr, res_type="kaiser_fast" |
|
) |
|
result = computor.compute(audio, target_sr, False) |
|
sig, bak, ovr = result["SIG"], result["BAK"], result["OVRL"] |
|
|
|
if ovr == 0: |
|
print("calculate dns mos failed") |
|
return sig, bak, ovr |
|
|
|
mos_computer = DNSMOSComputer( |
|
"baselines/dnsmos/sig_bak_ovr.onnx", |
|
"baselines/dnsmos/model_v8.onnx", |
|
device="cuda", |
|
device_id=0, |
|
) |
|
|
|
def load_models(args): |
|
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC", |
|
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth", |
|
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml") |
|
config = yaml.safe_load(open(dit_config_path, "r")) |
|
model_params = recursive_munch(config["model_params"]) |
|
model = build_model(model_params, stage="DiT") |
|
hop_length = config["preprocess_params"]["spect_params"]["hop_length"] |
|
sr = config["preprocess_params"]["sr"] |
|
|
|
|
|
model, _, _, _ = load_checkpoint( |
|
model, |
|
None, |
|
dit_checkpoint_path, |
|
load_only_params=True, |
|
ignore_modules=[], |
|
is_distributed=False, |
|
) |
|
for key in model: |
|
model[key].eval() |
|
model[key].to(device) |
|
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) |
|
|
|
|
|
from modules.campplus.DTDNN import CAMPPlus |
|
|
|
campplus_ckpt_path = load_custom_model_from_hf( |
|
"funasr/campplus", "campplus_cn_common.bin", config_filename=None |
|
) |
|
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192) |
|
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu")) |
|
campplus_model.eval() |
|
campplus_model.to(device) |
|
|
|
vocoder_type = model_params.vocoder.type |
|
|
|
if vocoder_type == 'bigvgan': |
|
from modules.bigvgan import bigvgan |
|
bigvgan_name = model_params.vocoder.name |
|
bigvgan_model = bigvgan.BigVGAN.from_pretrained(bigvgan_name, use_cuda_kernel=False) |
|
|
|
bigvgan_model.remove_weight_norm() |
|
bigvgan_model = bigvgan_model.eval().to(device) |
|
vocoder_fn = bigvgan_model |
|
elif vocoder_type == 'hifigan': |
|
from modules.hifigan.generator import HiFTGenerator |
|
from modules.hifigan.f0_predictor import ConvRNNF0Predictor |
|
hift_config = yaml.safe_load(open('configs/hifigan.yml', 'r')) |
|
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor'])) |
|
hift_gen.load_state_dict(torch.load(hift_config['pretrained_model_path'], map_location='cpu')) |
|
hift_gen.eval() |
|
hift_gen.to(device) |
|
vocoder_fn = hift_gen |
|
elif vocoder_type == "vocos": |
|
vocos_config = yaml.safe_load(open(model_params.vocoder.vocos.config, 'r')) |
|
vocos_path = model_params.vocoder.vocos.path |
|
vocos_model_params = recursive_munch(vocos_config['model_params']) |
|
vocos = build_model(vocos_model_params, stage='mel_vocos') |
|
vocos_checkpoint_path = vocos_path |
|
vocos, _, _, _ = load_checkpoint(vocos, None, vocos_checkpoint_path, |
|
load_only_params=True, ignore_modules=[], is_distributed=False) |
|
_ = [vocos[key].eval().to(device) for key in vocos] |
|
_ = [vocos[key].to(device) for key in vocos] |
|
total_params = sum(sum(p.numel() for p in vocos[key].parameters() if p.requires_grad) for key in vocos.keys()) |
|
print(f"Vocoder model total parameters: {total_params / 1_000_000:.2f}M") |
|
vocoder_fn = vocos.decoder |
|
else: |
|
raise ValueError(f"Unsupported vocoder type: {vocoder_type}") |
|
|
|
speech_tokenizer_type = model_params.speech_tokenizer.type |
|
if speech_tokenizer_type == 'whisper': |
|
|
|
from transformers import AutoFeatureExtractor, WhisperModel |
|
whisper_name = model_params.speech_tokenizer.name |
|
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device) |
|
del whisper_model.decoder |
|
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name) |
|
|
|
def semantic_fn(waves_16k): |
|
ori_inputs = whisper_feature_extractor([waves_16k.squeeze(0).cpu().numpy()], |
|
return_tensors="pt", |
|
return_attention_mask=True) |
|
ori_input_features = whisper_model._mask_input_features( |
|
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device) |
|
with torch.no_grad(): |
|
ori_outputs = whisper_model.encoder( |
|
ori_input_features.to(whisper_model.encoder.dtype), |
|
head_mask=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
) |
|
S_ori = ori_outputs.last_hidden_state.to(torch.float32) |
|
S_ori = S_ori[:, :waves_16k.size(-1) // 320 + 1] |
|
return S_ori |
|
elif speech_tokenizer_type == 'cnhubert': |
|
from transformers import ( |
|
Wav2Vec2FeatureExtractor, |
|
HubertModel, |
|
) |
|
hubert_model_name = config['model_params']['speech_tokenizer']['name'] |
|
hubert_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_name) |
|
hubert_model = HubertModel.from_pretrained(hubert_model_name) |
|
hubert_model = hubert_model.to(device) |
|
hubert_model = hubert_model.eval() |
|
hubert_model = hubert_model.half() |
|
|
|
def semantic_fn(waves_16k): |
|
ori_waves_16k_input_list = [ |
|
waves_16k[bib].cpu().numpy() |
|
for bib in range(len(waves_16k)) |
|
] |
|
ori_inputs = hubert_feature_extractor(ori_waves_16k_input_list, |
|
return_tensors="pt", |
|
return_attention_mask=True, |
|
padding=True, |
|
sampling_rate=16000).to(device) |
|
with torch.no_grad(): |
|
ori_outputs = hubert_model( |
|
ori_inputs.input_values.half(), |
|
) |
|
S_ori = ori_outputs.last_hidden_state.float() |
|
return S_ori |
|
elif speech_tokenizer_type == 'xlsr': |
|
from transformers import ( |
|
Wav2Vec2FeatureExtractor, |
|
Wav2Vec2Model, |
|
) |
|
model_name = config['model_params']['speech_tokenizer']['name'] |
|
output_layer = config['model_params']['speech_tokenizer']['output_layer'] |
|
wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name) |
|
wav2vec_model = Wav2Vec2Model.from_pretrained(model_name) |
|
wav2vec_model.encoder.layers = wav2vec_model.encoder.layers[:output_layer] |
|
wav2vec_model = wav2vec_model.to(device) |
|
wav2vec_model = wav2vec_model.eval() |
|
wav2vec_model = wav2vec_model.half() |
|
|
|
def semantic_fn(waves_16k): |
|
ori_waves_16k_input_list = [ |
|
waves_16k[bib].cpu().numpy() |
|
for bib in range(len(waves_16k)) |
|
] |
|
ori_inputs = wav2vec_feature_extractor(ori_waves_16k_input_list, |
|
return_tensors="pt", |
|
return_attention_mask=True, |
|
padding=True, |
|
sampling_rate=16000).to(device) |
|
with torch.no_grad(): |
|
ori_outputs = wav2vec_model( |
|
ori_inputs.input_values.half(), |
|
) |
|
S_ori = ori_outputs.last_hidden_state.float() |
|
return S_ori |
|
else: |
|
raise ValueError(f"Unsupported speech tokenizer type: {model_params.speech_tokenizer.type}") |
|
|
|
mel_fn_args = { |
|
"n_fft": config['preprocess_params']['spect_params']['n_fft'], |
|
"win_size": config['preprocess_params']['spect_params']['win_length'], |
|
"hop_size": config['preprocess_params']['spect_params']['hop_length'], |
|
"num_mels": config['preprocess_params']['spect_params']['n_mels'], |
|
"sampling_rate": sr, |
|
"fmin": config['preprocess_params'].get('fmin', 0), |
|
"fmax": None if config['preprocess_params']['spect_params'].get('fmax', "None") == "None" else 8000, |
|
"center": False |
|
} |
|
from modules.audio import mel_spectrogram |
|
|
|
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args) |
|
|
|
return ( |
|
model, |
|
semantic_fn, |
|
vocoder_fn, |
|
campplus_model, |
|
to_mel, |
|
mel_fn_args, |
|
) |
|
|
|
|
|
@torch.no_grad() |
|
def main(args): |
|
|
|
if args.xvector_extractor == "wavlm": |
|
wavlm_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( |
|
"microsoft/wavlm-base-plus-sv" |
|
) |
|
wavlm_model = WavLMForXVector.from_pretrained( |
|
"microsoft/wavlm-base-plus-sv" |
|
).to(device) |
|
elif args.xvector_extractor == "resemblyzer": |
|
resemblyzer_encoder = VoiceEncoder() |
|
elif args.xvector_extractor == 'wavlm-large': |
|
import sys |
|
sys.path.append("../UniSpeech/downstreams/speaker_verification") |
|
from verification import init_model |
|
wavlm_model = init_model("wavlm_large", "D:/wavlm_large_finetune.pth") |
|
wavlm_model.cuda() |
|
wavlm_model.eval() |
|
else: |
|
raise ValueError(f"Unknown xvector extractor: {args.xvector_extractor}") |
|
|
|
|
|
asr_processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft") |
|
asr_model = HubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft").to(device) |
|
|
|
( |
|
model, |
|
semantic_fn, |
|
vocoder_fn, |
|
campplus_model, |
|
to_mel, |
|
mel_fn_args, |
|
) = load_models(args) |
|
sr = mel_fn_args["sampling_rate"] |
|
|
|
source_dir = args.source |
|
target_dir = args.target |
|
diffusion_steps = args.diffusion_steps |
|
length_adjust = args.length_adjust |
|
inference_cfg_rate = args.inference_cfg_rate |
|
baseline = args.baseline |
|
max_samples = args.max_samples |
|
try: |
|
source_audio_list = open(osp.join(source_dir, "index.tsv"), "r").readlines() |
|
except FileNotFoundError: |
|
source_audio_list = os.listdir(source_dir) |
|
source_audio_list = [f for f in source_audio_list if f.endswith(".wav")] |
|
target_audio_list = os.listdir(target_dir) |
|
|
|
conversion_result_dir = args.output |
|
if baseline: |
|
conversion_result_dir = os.path.join(conversion_result_dir, baseline) |
|
os.makedirs(conversion_result_dir, exist_ok=True) |
|
|
|
similarity_list = [] |
|
gt_wer_list = [] |
|
gt_cer_list = [] |
|
vc_wer_list = [] |
|
vc_cer_list = [] |
|
dnsmos_list = [] |
|
for source_i, source_line in enumerate(tqdm(source_audio_list)): |
|
if source_i >= max_samples: |
|
break |
|
source_index, source_transcript = source_line.strip().split("\t") |
|
source_path = osp.join(source_dir, f"{source_index}.wav") |
|
for target_i, target_name in enumerate(target_audio_list): |
|
target_path = osp.join(target_dir, target_name) |
|
print(f"Processing {source_path} -> {target_path}") |
|
|
|
if os.path.exists(osp.join(conversion_result_dir, source_index, f"{target_name}")): |
|
|
|
vc_wave_16k, _ = librosa.load( |
|
osp.join(conversion_result_dir, source_index, f"{target_name}"), sr=16000 |
|
) |
|
vc_wave_16k = torch.tensor(vc_wave_16k).unsqueeze(0) |
|
ref_waves_16k, _ = librosa.load(target_path, sr=16000) |
|
ref_waves_16k = torch.tensor(ref_waves_16k).unsqueeze(0) |
|
else: |
|
if baseline == "openvoice": |
|
from baselines.openvoice import convert as openvoice_convert |
|
ref_waves_16k, vc_wave_16k = openvoice_convert(source_path, target_path, "temp.wav") |
|
elif baseline == "cosyvoice": |
|
from baselines.cosyvoice import convert as cosyvoice_convert |
|
ref_waves_16k, vc_wave_16k = cosyvoice_convert(source_path, target_path, "temp.wav") |
|
else: |
|
ref_waves_16k, vc_wave = convert( |
|
source_path, |
|
target_path, |
|
model, |
|
semantic_fn, |
|
vocoder_fn, |
|
campplus_model, |
|
to_mel, |
|
mel_fn_args, |
|
sr, |
|
length_adjust, |
|
diffusion_steps, |
|
inference_cfg_rate, |
|
remove_prompt=args.remove_prompt, |
|
) |
|
vc_wave_16k = torchaudio.functional.resample(vc_wave, sr, 16000) |
|
os.makedirs(osp.join(conversion_result_dir, source_index), exist_ok=True) |
|
torchaudio.save( |
|
osp.join(conversion_result_dir, source_index, f"{target_name}"), |
|
vc_wave_16k.cpu(), |
|
16000, |
|
) |
|
if args.xvector_extractor == "wavlm": |
|
ref_inputs = wavlm_feature_extractor( |
|
ref_waves_16k.squeeze(0).cpu(), padding=True, return_tensors="pt" |
|
).to(device) |
|
ref_embeddings = wavlm_model(**ref_inputs).embeddings |
|
ref_embeddings = torch.nn.functional.normalize(ref_embeddings, dim=-1).cpu() |
|
|
|
vc_inputs = wavlm_feature_extractor( |
|
vc_wave_16k.squeeze(0).cpu(), padding=True, return_tensors="pt" |
|
).to(device) |
|
vc_embeddings = wavlm_model(**vc_inputs).embeddings |
|
vc_embeddings = torch.nn.functional.normalize(vc_embeddings, dim=-1).cpu() |
|
|
|
similarity = torch.nn.functional.cosine_similarity( |
|
ref_embeddings, vc_embeddings, dim=-1 |
|
) |
|
elif args.xvector_extractor == "resemblyzer": |
|
ref_wav_resemblyzer = preprocess_wav(target_path) |
|
vc_wav_resemblyzer = preprocess_wav( |
|
osp.join(conversion_result_dir, source_index, f"{target_name}") |
|
) |
|
ref_embed = resemblyzer_encoder.embed_utterance(ref_wav_resemblyzer) |
|
vc_embed = resemblyzer_encoder.embed_utterance(vc_wav_resemblyzer) |
|
similarity = np.inner(ref_embed, vc_embed) |
|
elif args.xvector_extractor == 'wavlm-large': |
|
ref_embed = wavlm_model(ref_waves_16k.to(device)).cpu() |
|
vc_embed = wavlm_model(vc_wave_16k.to(device)).cpu() |
|
similarity = torch.nn.functional.cosine_similarity(ref_embed, vc_embed, dim=-1) |
|
else: |
|
raise ValueError(f"Unknown xvector extractor: {args.xvector_extractor}") |
|
print(f"Similarity: {similarity}") |
|
similarity_list.append(similarity) |
|
|
|
|
|
vc_asr_inputs = asr_processor( |
|
vc_wave_16k.squeeze(0).cpu(), return_tensors="pt", padding=True |
|
).to(device) |
|
vc_asr_logits = asr_model(**vc_asr_inputs).logits |
|
predicted_ids = torch.argmax(vc_asr_logits, dim=-1) |
|
vc_transcription = asr_processor.decode(predicted_ids[0]) |
|
|
|
|
|
source_wav_16k = librosa.load(source_path, sr=16000)[0] |
|
source_asr_inputs = asr_processor( |
|
source_wav_16k, return_tensors="pt", padding=True |
|
).to(device) |
|
source_asr_logits = asr_model(**source_asr_inputs).logits |
|
source_predicted_ids = torch.argmax(source_asr_logits, dim=-1) |
|
source_transcription = asr_processor.decode(source_predicted_ids[0]) |
|
|
|
|
|
source_transcript = source_transcript.lower() |
|
|
|
source_transcript = source_transcript.translate(str.maketrans("", "", string.punctuation)) |
|
source_transcription = source_transcription.lower() |
|
vc_transcription = vc_transcription.lower() |
|
|
|
|
|
gt_wer = jiwer.wer(source_transcript, source_transcription) |
|
gt_cer = jiwer.cer(source_transcript, source_transcription) |
|
vc_wer = jiwer.wer(source_transcript, vc_transcription) |
|
vc_cer = jiwer.cer(source_transcript, vc_transcription) |
|
|
|
print(f"GT WER: {gt_wer}, CER: {gt_cer}") |
|
print(f"VC WER: {vc_wer}, CER: {vc_cer}") |
|
gt_wer_list.append(gt_wer) |
|
gt_cer_list.append(gt_cer) |
|
vc_wer_list.append(vc_wer) |
|
vc_cer_list.append(vc_cer) |
|
|
|
|
|
sig, bak, ovr = calc_mos(mos_computer, vc_wave_16k.squeeze(0).cpu().numpy(), 16000) |
|
dnsmos_list.append((sig, bak, ovr)) |
|
|
|
print(f"Average GT WER: {sum(gt_wer_list) / len(gt_wer_list)}") |
|
print(f"Average GT CER: {sum(gt_cer_list) / len(gt_cer_list)}") |
|
print(f"Average VC WER: {sum(vc_wer_list) / len(vc_wer_list)}") |
|
print(f"Average VC CER: {sum(vc_cer_list) / len(vc_cer_list)}") |
|
print(f"Average similarity: {sum(similarity_list) / len(similarity_list)}") |
|
|
|
print(f"Average DNS MOS SIG: {sum([x[0] for x in dnsmos_list]) / len(dnsmos_list)}") |
|
print(f"Average DNS MOS BAK: {sum([x[1] for x in dnsmos_list]) / len(dnsmos_list)}") |
|
print(f"Average DNS MOS OVR: {sum([x[2] for x in dnsmos_list]) / len(dnsmos_list)}") |
|
|
|
|
|
with open(osp.join(conversion_result_dir, source_index, "result.txt"), 'w') as f: |
|
f.write(f"GT WER: {sum(gt_wer_list[-len(target_audio_list):]) / len(target_audio_list)}\n") |
|
f.write(f"GT CER: {sum(gt_cer_list[-len(target_audio_list):]) / len(target_audio_list)}\n") |
|
f.write(f"VC WER: {sum(vc_wer_list[-len(target_audio_list):]) / len(target_audio_list)}\n") |
|
f.write(f"VC CER: {sum(vc_cer_list[-len(target_audio_list):]) / len(target_audio_list)}\n") |
|
f.write(f"Average similarity: {sum(similarity_list[-len(target_audio_list):]) / len(target_audio_list)}\n") |
|
|
|
print(f"Average WER: {sum(gt_wer_list) / len(gt_wer_list)}") |
|
print(f"Average CER: {sum(gt_cer_list) / len(gt_cer_list)}") |
|
print(f"Average WER: {sum(vc_wer_list) / len(vc_wer_list)}") |
|
print(f"Average CER: {sum(vc_cer_list) / len(vc_cer_list)}") |
|
print(f"Average similarity: {sum(similarity_list) / len(similarity_list)}") |
|
|
|
with open(osp.join(conversion_result_dir, f"{args.xvector_extractor}_similarity.tsv"), "w") as f: |
|
f.write("\n".join([str(s) for s in similarity_list])) |
|
|
|
with open(osp.join(conversion_result_dir, "result.txt"), 'w') as f: |
|
f.write(f"GT WER: {sum(gt_wer_list) / len(gt_wer_list)}\n") |
|
f.write(f"GT CER: {sum(gt_cer_list) / len(gt_cer_list)}\n") |
|
f.write(f"VC WER: {sum(vc_wer_list) / len(vc_wer_list)}\n") |
|
f.write(f"VC CER: {sum(vc_cer_list) / len(vc_cer_list)}\n") |
|
|
|
print(f"Average DNS MOS SIG: {sum([x[0] for x in dnsmos_list]) / len(dnsmos_list)}") |
|
print(f"Average DNS MOS BAK: {sum([x[1] for x in dnsmos_list]) / len(dnsmos_list)}") |
|
print(f"Average DNS MOS OVR: {sum([x[2] for x in dnsmos_list]) / len(dnsmos_list)}") |
|
|
|
|
|
def convert( |
|
source_path, |
|
target_path, |
|
model, |
|
semantic_fn, |
|
vocoder_fn, |
|
campplus_model, |
|
to_mel, |
|
mel_fn_args, |
|
sr, |
|
length_adjust, |
|
diffusion_steps, |
|
inference_cfg_rate, |
|
remove_prompt=False, |
|
): |
|
source_audio = librosa.load(source_path, sr=sr)[0] |
|
ref_audio = librosa.load(target_path, sr=sr)[0] |
|
|
|
|
|
|
|
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device) |
|
ref_audio = torch.tensor(ref_audio).unsqueeze(0).float().to(device) |
|
|
|
if source_audio.size(1) + ref_audio.size(1) > 30 * sr: |
|
print(f"reference audio clipped from {ref_audio.size(1)/sr} seconds to {30 * sr - source_audio.size(1)} seconds") |
|
ref_audio = ref_audio[:, :30 * sr - source_audio.size(1)] |
|
|
|
|
|
source_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000) |
|
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000) |
|
|
|
S_alt = semantic_fn(source_waves_16k) |
|
S_ori = semantic_fn(ref_waves_16k) |
|
|
|
mel = to_mel(source_audio.to(device).float()) |
|
mel2 = to_mel(ref_audio.to(device).float()) |
|
|
|
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device) |
|
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device) |
|
|
|
feat2 = torchaudio.compliance.kaldi.fbank( |
|
ref_waves_16k, num_mel_bins=80, dither=0, sample_frequency=16000 |
|
) |
|
feat2 = feat2 - feat2.mean(dim=0, keepdim=True) |
|
style2 = campplus_model(feat2.unsqueeze(0)) |
|
|
|
cond = model.length_regulator( |
|
S_alt, ylens=target_lengths, n_quantizers=3, f0=None |
|
)[0] |
|
prompt_condition = model.length_regulator( |
|
S_ori, ylens=target2_lengths, n_quantizers=3, f0=None |
|
)[0] |
|
if remove_prompt: |
|
cat_condition = cond |
|
mel2 = torch.zeros([mel2.size(0), mel2.size(1), 0]).to(mel2.device) |
|
else: |
|
cat_condition = torch.cat([prompt_condition, cond], dim=1) |
|
|
|
vc_target = model.cfm.inference( |
|
cat_condition, |
|
torch.LongTensor([cat_condition.size(1)]).to(mel2.device), |
|
mel2, |
|
style2, |
|
None, |
|
diffusion_steps, |
|
inference_cfg_rate=inference_cfg_rate, |
|
) |
|
vc_target = vc_target[:, :, mel2.size(-1) :] |
|
|
|
|
|
vc_wave = vocoder_fn(vc_target).squeeze(1) |
|
|
|
return ref_waves_16k, vc_wave |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--source", type=str, default="./examples/libritts-test-clean/" |
|
) |
|
parser.add_argument("--target", type=str, default="./examples/reference/") |
|
parser.add_argument("--output", type=str, default="./examples/eval/converted/") |
|
parser.add_argument("--diffusion-steps", type=int, default=30) |
|
parser.add_argument("--length-adjust", type=float, default=1.0) |
|
parser.add_argument("--inference-cfg-rate", type=float, default=0.7) |
|
parser.add_argument( |
|
"--xvector-extractor", type=str, default="wavlm-large" |
|
) |
|
parser.add_argument("--baseline", type=str, default="") |
|
parser.add_argument("--max-samples", type=int, default=20) |
|
parser.add_argument("--remove-prompt", type=bool, default=False) |
|
args = parser.parse_args() |
|
main(args) |