|
from hf_utils import load_custom_model_from_hf |
|
from modules.commons import str2bool |
|
import librosa |
|
import torchaudio |
|
import time |
|
from modules.commons import * |
|
import random |
|
import yaml |
|
import torch |
|
import argparse |
|
import warnings |
|
import shutil |
|
import os |
|
|
|
import numpy as np |
|
|
|
os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache' |
|
|
|
warnings.simplefilter('ignore') |
|
|
|
|
|
|
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
elif torch.backends.mps.is_available(): |
|
device = torch.device("mps") |
|
else: |
|
device = torch.device("cpu") |
|
|
|
fp16 = False |
|
|
|
|
|
def load_models(f0_condition=False, checkpoint="./runs/training_run/epochs_2nd_00020.pth", config="./configs/presets/config_dit_mel_seed_uvit_whisper_small_wavenet.yml"): |
|
fp16 = torch.cuda.is_available() |
|
|
|
if checkpoint is not None: |
|
print("Loading fine-tuned model") |
|
dit_checkpoint_path = checkpoint |
|
dit_config_path = config |
|
else: |
|
|
|
if not f0_condition: |
|
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC", |
|
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth", |
|
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml") |
|
else: |
|
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC", |
|
"DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema_v2.pth", |
|
"config_dit_mel_seed_uvit_whisper_base_f0_44k.yml") |
|
|
|
if not f0_condition: |
|
f0_fn = None |
|
else: |
|
|
|
from modules.rmvpe import RMVPE |
|
|
|
model_path = load_custom_model_from_hf( |
|
"lj1995/VoiceConversionWebUI", "rmvpe.pt", None) |
|
f0_extractor = RMVPE(model_path, is_half=False, device=device) |
|
f0_fn = f0_extractor.infer_from_audio |
|
|
|
config = yaml.safe_load(open(dit_config_path, "r")) |
|
model_params = recursive_munch(config["model_params"]) |
|
model_params.dit_type = 'DiT' |
|
model = build_model(model_params, stage="DiT") |
|
hop_length = config["preprocess_params"]["spect_params"]["hop_length"] |
|
sr = config["preprocess_params"]["sr"] |
|
|
|
|
|
model, _, _, _ = load_checkpoint( |
|
model, |
|
None, |
|
dit_checkpoint_path, |
|
load_only_params=True, |
|
ignore_modules=[], |
|
is_distributed=False, |
|
) |
|
for key in model: |
|
model[key].eval() |
|
model[key].to(device) |
|
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) |
|
|
|
|
|
from modules.campplus.DTDNN import CAMPPlus |
|
|
|
campplus_ckpt_path = load_custom_model_from_hf( |
|
"funasr/campplus", "campplus_cn_common.bin", config_filename=None |
|
) |
|
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192) |
|
campplus_model.load_state_dict(torch.load( |
|
campplus_ckpt_path, map_location="cpu")) |
|
campplus_model.eval() |
|
campplus_model.to(device) |
|
|
|
vocoder_type = model_params.vocoder.type |
|
|
|
if vocoder_type == 'bigvgan': |
|
from modules.bigvgan import bigvgan |
|
bigvgan_name = model_params.vocoder.name |
|
bigvgan_model = bigvgan.BigVGAN.from_pretrained( |
|
bigvgan_name, use_cuda_kernel=False) |
|
|
|
bigvgan_model.remove_weight_norm() |
|
bigvgan_model = bigvgan_model.eval().to(device) |
|
vocoder_fn = bigvgan_model |
|
elif vocoder_type == 'hifigan': |
|
from modules.hifigan.generator import HiFTGenerator |
|
from modules.hifigan.f0_predictor import ConvRNNF0Predictor |
|
hift_config = yaml.safe_load(open('configs/hifigan.yml', 'r')) |
|
hift_gen = HiFTGenerator( |
|
**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor'])) |
|
hift_path = load_custom_model_from_hf( |
|
"FunAudioLLM/CosyVoice-300M", 'hift.pt', None) |
|
hift_gen.load_state_dict(torch.load(hift_path, map_location='cpu')) |
|
hift_gen.eval() |
|
hift_gen.to(device) |
|
vocoder_fn = hift_gen |
|
elif vocoder_type == "vocos": |
|
vocos_config = yaml.safe_load( |
|
open(model_params.vocoder.vocos.config, 'r')) |
|
vocos_path = model_params.vocoder.vocos.path |
|
vocos_model_params = recursive_munch(vocos_config['model_params']) |
|
vocos = build_model(vocos_model_params, stage='mel_vocos') |
|
vocos_checkpoint_path = vocos_path |
|
vocos, _, _, _ = load_checkpoint(vocos, None, vocos_checkpoint_path, |
|
load_only_params=True, ignore_modules=[], is_distributed=False) |
|
_ = [vocos[key].eval().to(device) for key in vocos] |
|
_ = [vocos[key].to(device) for key in vocos] |
|
total_params = sum(sum(p.numel() for p in vocos[key].parameters( |
|
) if p.requires_grad) for key in vocos.keys()) |
|
print( |
|
f"Vocoder model total parameters: {total_params / 1_000_000:.2f}M") |
|
vocoder_fn = vocos.decoder |
|
else: |
|
raise ValueError(f"Unknown vocoder type: {vocoder_type}") |
|
|
|
speech_tokenizer_type = model_params.speech_tokenizer.type |
|
if speech_tokenizer_type == 'whisper': |
|
|
|
from transformers import AutoFeatureExtractor, WhisperModel |
|
whisper_name = model_params.speech_tokenizer.name |
|
whisper_model = WhisperModel.from_pretrained( |
|
whisper_name, torch_dtype=torch.float16).to(device) |
|
del whisper_model.decoder |
|
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained( |
|
whisper_name) |
|
|
|
def semantic_fn(waves_16k): |
|
ori_inputs = whisper_feature_extractor([waves_16k.squeeze(0).cpu().numpy()], |
|
return_tensors="pt", |
|
return_attention_mask=True) |
|
ori_input_features = whisper_model._mask_input_features( |
|
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device) |
|
with torch.no_grad(): |
|
ori_outputs = whisper_model.encoder( |
|
ori_input_features.to(whisper_model.encoder.dtype), |
|
head_mask=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
) |
|
S_ori = ori_outputs.last_hidden_state.to(torch.float32) |
|
S_ori = S_ori[:, :waves_16k.size(-1) // 320 + 1] |
|
return S_ori |
|
elif speech_tokenizer_type == 'cnhubert': |
|
from transformers import ( |
|
Wav2Vec2FeatureExtractor, |
|
HubertModel, |
|
) |
|
hubert_model_name = config['model_params']['speech_tokenizer']['name'] |
|
hubert_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( |
|
hubert_model_name) |
|
hubert_model = HubertModel.from_pretrained(hubert_model_name) |
|
hubert_model = hubert_model.to(device) |
|
hubert_model = hubert_model.eval() |
|
hubert_model = hubert_model.half() |
|
|
|
def semantic_fn(waves_16k): |
|
ori_waves_16k_input_list = [ |
|
waves_16k[bib].cpu().numpy() |
|
for bib in range(len(waves_16k)) |
|
] |
|
ori_inputs = hubert_feature_extractor(ori_waves_16k_input_list, |
|
return_tensors="pt", |
|
return_attention_mask=True, |
|
padding=True, |
|
sampling_rate=16000).to(device) |
|
with torch.no_grad(): |
|
ori_outputs = hubert_model( |
|
ori_inputs.input_values.half(), |
|
) |
|
S_ori = ori_outputs.last_hidden_state.float() |
|
return S_ori |
|
elif speech_tokenizer_type == 'xlsr': |
|
from transformers import ( |
|
Wav2Vec2FeatureExtractor, |
|
Wav2Vec2Model, |
|
) |
|
model_name = config['model_params']['speech_tokenizer']['name'] |
|
output_layer = config['model_params']['speech_tokenizer']['output_layer'] |
|
wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( |
|
model_name) |
|
wav2vec_model = Wav2Vec2Model.from_pretrained(model_name) |
|
wav2vec_model.encoder.layers = wav2vec_model.encoder.layers[:output_layer] |
|
wav2vec_model = wav2vec_model.to(device) |
|
wav2vec_model = wav2vec_model.eval() |
|
wav2vec_model = wav2vec_model.half() |
|
|
|
def semantic_fn(waves_16k): |
|
ori_waves_16k_input_list = [ |
|
waves_16k[bib].cpu().numpy() |
|
for bib in range(len(waves_16k)) |
|
] |
|
ori_inputs = wav2vec_feature_extractor(ori_waves_16k_input_list, |
|
return_tensors="pt", |
|
return_attention_mask=True, |
|
padding=True, |
|
sampling_rate=16000).to(device) |
|
with torch.no_grad(): |
|
ori_outputs = wav2vec_model( |
|
ori_inputs.input_values.half(), |
|
) |
|
S_ori = ori_outputs.last_hidden_state.float() |
|
return S_ori |
|
else: |
|
raise ValueError( |
|
f"Unknown speech tokenizer type: {speech_tokenizer_type}") |
|
|
|
mel_fn_args = { |
|
"n_fft": config['preprocess_params']['spect_params']['n_fft'], |
|
"win_size": config['preprocess_params']['spect_params']['win_length'], |
|
"hop_size": config['preprocess_params']['spect_params']['hop_length'], |
|
"num_mels": config['preprocess_params']['spect_params']['n_mels'], |
|
"sampling_rate": sr, |
|
"fmin": config['preprocess_params']['spect_params'].get('fmin', 0), |
|
"fmax": None if config['preprocess_params']['spect_params'].get('fmax', "None") == "None" else 8000, |
|
"center": False |
|
} |
|
from modules.audio import mel_spectrogram |
|
|
|
def to_mel(x): return mel_spectrogram(x, **mel_fn_args) |
|
|
|
return ( |
|
model, |
|
semantic_fn, |
|
f0_fn, |
|
vocoder_fn, |
|
campplus_model, |
|
to_mel, |
|
mel_fn_args, |
|
) |
|
|
|
|
|
def adjust_f0_semitones(f0_sequence, n_semitones): |
|
factor = 2 ** (n_semitones / 12) |
|
return f0_sequence * factor |
|
|
|
|
|
def crossfade(chunk1, chunk2, overlap): |
|
fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2 |
|
fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2 |
|
if len(chunk2) < overlap: |
|
chunk2[:overlap] = chunk2[:overlap] * \ |
|
fade_in[:len(chunk2)] + (chunk1[-overlap:] |
|
* fade_out)[:len(chunk2)] |
|
else: |
|
chunk2[:overlap] = chunk2[:overlap] * \ |
|
fade_in + chunk1[-overlap:] * fade_out |
|
return chunk2 |
|
|
|
|
|
@torch.no_grad() |
|
def process_voice_conversion(models, source, target_name, output, f0_condition=False, auto_f0_adjust=False, pitch_shift=0, diffusion_steps=25, length_adjust=1.0, inference_cfg_rate=0.7): |
|
model, semantic_fn, f0_fn, vocoder_fn, campplus_model, mel_fn, mel_fn_args = models |
|
sr = mel_fn_args['sampling_rate'] |
|
source_audio = librosa.load(source, sr=sr)[0] |
|
ref_audio = librosa.load(target_name, sr=sr)[0] |
|
|
|
sr = 22050 if not f0_condition else 44100 |
|
hop_length = 256 if not f0_condition else 512 |
|
max_context_window = sr // hop_length * 30 |
|
overlap_frame_len = 16 |
|
overlap_wave_len = overlap_frame_len * hop_length |
|
|
|
|
|
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device) |
|
ref_audio = torch.tensor( |
|
ref_audio[:sr * 25]).unsqueeze(0).float().to(device) |
|
|
|
time_vc_start = time.time() |
|
|
|
converted_waves_16k = torchaudio.functional.resample( |
|
source_audio, sr, 16000) |
|
|
|
if converted_waves_16k.size(-1) <= 16000 * 30: |
|
S_alt = semantic_fn(converted_waves_16k) |
|
else: |
|
overlapping_time = 5 |
|
S_alt_list = [] |
|
buffer = None |
|
traversed_time = 0 |
|
while traversed_time < converted_waves_16k.size(-1): |
|
if buffer is None: |
|
chunk = converted_waves_16k[:, |
|
traversed_time:traversed_time + 16000 * 30] |
|
else: |
|
chunk = torch.cat( |
|
[buffer, converted_waves_16k[:, traversed_time:traversed_time + |
|
16000 * (30 - overlapping_time)]], |
|
dim=-1) |
|
S_alt = semantic_fn(chunk) |
|
if traversed_time == 0: |
|
S_alt_list.append(S_alt) |
|
else: |
|
S_alt_list.append(S_alt[:, 50 * overlapping_time:]) |
|
buffer = chunk[:, -16000 * overlapping_time:] |
|
traversed_time += 30 * \ |
|
16000 if traversed_time == 0 else chunk.size( |
|
-1) - 16000 * overlapping_time |
|
S_alt = torch.cat(S_alt_list, dim=1) |
|
|
|
ori_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000) |
|
S_ori = semantic_fn(ori_waves_16k) |
|
|
|
mel = mel_fn(source_audio.to(device).float()) |
|
mel2 = mel_fn(ref_audio.to(device).float()) |
|
|
|
target_lengths = torch.LongTensor( |
|
[int(mel.size(2) * length_adjust)]).to(mel.device) |
|
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device) |
|
|
|
feat2 = torchaudio.compliance.kaldi.fbank(ori_waves_16k, |
|
num_mel_bins=80, |
|
dither=0, |
|
sample_frequency=16000) |
|
feat2 = feat2 - feat2.mean(dim=0, keepdim=True) |
|
style2 = campplus_model(feat2.unsqueeze(0)) |
|
|
|
if f0_condition: |
|
F0_ori = f0_fn(ori_waves_16k[0], thred=0.03) |
|
F0_alt = f0_fn(converted_waves_16k[0], thred=0.03) |
|
|
|
F0_ori = torch.from_numpy(F0_ori).to(device)[None] |
|
F0_alt = torch.from_numpy(F0_alt).to(device)[None] |
|
|
|
voiced_F0_ori = F0_ori[F0_ori > 1] |
|
voiced_F0_alt = F0_alt[F0_alt > 1] |
|
|
|
log_f0_alt = torch.log(F0_alt + 1e-5) |
|
voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5) |
|
voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5) |
|
median_log_f0_ori = torch.median(voiced_log_f0_ori) |
|
median_log_f0_alt = torch.median(voiced_log_f0_alt) |
|
|
|
|
|
shifted_log_f0_alt = log_f0_alt.clone() |
|
if auto_f0_adjust: |
|
shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > |
|
1] - median_log_f0_alt + median_log_f0_ori |
|
shifted_f0_alt = torch.exp(shifted_log_f0_alt) |
|
if pitch_shift != 0: |
|
shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones( |
|
shifted_f0_alt[F0_alt > 1], pitch_shift) |
|
else: |
|
F0_ori = None |
|
F0_alt = None |
|
shifted_f0_alt = None |
|
|
|
|
|
cond, _, codes, commitment_loss, codebook_loss = model.length_regulator(S_alt, ylens=target_lengths, |
|
n_quantizers=3, |
|
f0=shifted_f0_alt) |
|
prompt_condition, _, codes, commitment_loss, codebook_loss = model.length_regulator(S_ori, |
|
ylens=target2_lengths, |
|
n_quantizers=3, |
|
f0=F0_ori) |
|
|
|
max_source_window = max_context_window - mel2.size(2) |
|
|
|
processed_frames = 0 |
|
generated_wave_chunks = [] |
|
|
|
while processed_frames < cond.size(1): |
|
chunk_cond = cond[:, |
|
processed_frames:processed_frames + max_source_window] |
|
is_last_chunk = processed_frames + max_source_window >= cond.size(1) |
|
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1) |
|
with torch.autocast(device_type=device.type, dtype=torch.float16 if fp16 else torch.float32): |
|
|
|
vc_target = model.cfm.inference(cat_condition, |
|
torch.LongTensor( |
|
[cat_condition.size(1)]).to(mel2.device), |
|
mel2, style2, None, diffusion_steps, |
|
inference_cfg_rate=inference_cfg_rate) |
|
vc_target = vc_target[:, :, mel2.size(-1):] |
|
vc_wave = vocoder_fn(vc_target.float()).squeeze() |
|
vc_wave = vc_wave[None, :] |
|
if processed_frames == 0: |
|
if is_last_chunk: |
|
output_wave = vc_wave[0].cpu().numpy() |
|
generated_wave_chunks.append(output_wave) |
|
break |
|
output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy() |
|
generated_wave_chunks.append(output_wave) |
|
previous_chunk = vc_wave[0, -overlap_wave_len:] |
|
processed_frames += vc_target.size(2) - overlap_frame_len |
|
elif is_last_chunk: |
|
output_wave = crossfade(previous_chunk.cpu().numpy( |
|
), vc_wave[0].cpu().numpy(), overlap_wave_len) |
|
generated_wave_chunks.append(output_wave) |
|
processed_frames += vc_target.size(2) - overlap_frame_len |
|
break |
|
else: |
|
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), |
|
overlap_wave_len) |
|
generated_wave_chunks.append(output_wave) |
|
previous_chunk = vc_wave[0, -overlap_wave_len:] |
|
processed_frames += vc_target.size(2) - overlap_frame_len |
|
vc_wave = torch.tensor(np.concatenate(generated_wave_chunks))[ |
|
None, :].float() |
|
time_vc_end = time.time() |
|
print(f"RTF: {(time_vc_end - time_vc_start) / vc_wave.size(-1) * sr}") |
|
|
|
if output: |
|
source_name = os.path.basename(source).split(".")[0] |
|
target_name = os.path.basename(target_name).split(".")[0] |
|
os.makedirs(output, exist_ok=True) |
|
torchaudio.save(os.path.join( |
|
output, f"vc_{source_name}_{target_name}_{length_adjust}_{diffusion_steps}_{inference_cfg_rate}.wav"), vc_wave.cpu(), sr) |
|
|
|
return vc_wave.cpu(), sr |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--source", type=str, |
|
default="./examples/source/source_s1.wav") |
|
parser.add_argument("--target", type=str, |
|
default="./examples/reference/s1p1.wav") |
|
parser.add_argument("--output", type=str, default="./reconstructed") |
|
parser.add_argument("--diffusion-steps", type=int, default=30) |
|
parser.add_argument("--length-adjust", type=float, default=1.0) |
|
parser.add_argument("--inference-cfg-rate", type=float, default=0.7) |
|
parser.add_argument("--f0-condition", type=str2bool, default=False) |
|
parser.add_argument("--auto-f0-adjust", type=str2bool, default=False) |
|
parser.add_argument("--semi-tone-shift", type=int, default=0) |
|
parser.add_argument("--checkpoint", type=str, |
|
help="Path to the checkpoint file", default=None) |
|
parser.add_argument("--config", type=str, |
|
help="Path to the config file", default=None) |
|
parser.add_argument("--fp16", type=str2bool, default=True) |
|
args = parser.parse_args() |
|
|
|
|