|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from modules.campplus.layers import DenseLayer |
|
|
|
|
|
class CosineClassifier(nn.Module): |
|
def __init__( |
|
self, |
|
input_dim, |
|
num_blocks=0, |
|
inter_dim=512, |
|
out_neurons=1000, |
|
): |
|
|
|
super().__init__() |
|
self.blocks = nn.ModuleList() |
|
|
|
for index in range(num_blocks): |
|
self.blocks.append( |
|
DenseLayer(input_dim, inter_dim, config_str='batchnorm') |
|
) |
|
input_dim = inter_dim |
|
|
|
self.weight = nn.Parameter( |
|
torch.FloatTensor(out_neurons, input_dim) |
|
) |
|
nn.init.xavier_uniform_(self.weight) |
|
|
|
def forward(self, x): |
|
|
|
for layer in self.blocks: |
|
x = layer(x) |
|
|
|
|
|
x = F.linear(F.normalize(x), F.normalize(self.weight)) |
|
return x |
|
|
|
class LinearClassifier(nn.Module): |
|
def __init__( |
|
self, |
|
input_dim, |
|
num_blocks=0, |
|
inter_dim=512, |
|
out_neurons=1000, |
|
): |
|
|
|
super().__init__() |
|
self.blocks = nn.ModuleList() |
|
|
|
self.nonlinear = nn.ReLU(inplace=True) |
|
for index in range(num_blocks): |
|
self.blocks.append( |
|
DenseLayer(input_dim, inter_dim, bias=True) |
|
) |
|
input_dim = inter_dim |
|
|
|
self.linear = nn.Linear(input_dim, out_neurons, bias=True) |
|
|
|
def forward(self, x): |
|
|
|
x = self.nonlinear(x) |
|
for layer in self.blocks: |
|
x = layer(x) |
|
x = self.linear(x) |
|
return x |