|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as cp |
|
from torch import nn |
|
|
|
|
|
def get_nonlinear(config_str, channels): |
|
nonlinear = nn.Sequential() |
|
for name in config_str.split('-'): |
|
if name == 'relu': |
|
nonlinear.add_module('relu', nn.ReLU(inplace=True)) |
|
elif name == 'prelu': |
|
nonlinear.add_module('prelu', nn.PReLU(channels)) |
|
elif name == 'batchnorm': |
|
nonlinear.add_module('batchnorm', nn.BatchNorm1d(channels)) |
|
elif name == 'batchnorm_': |
|
nonlinear.add_module('batchnorm', |
|
nn.BatchNorm1d(channels, affine=False)) |
|
else: |
|
raise ValueError('Unexpected module ({}).'.format(name)) |
|
return nonlinear |
|
|
|
def statistics_pooling(x, dim=-1, keepdim=False, unbiased=True, eps=1e-2): |
|
mean = x.mean(dim=dim) |
|
std = x.std(dim=dim, unbiased=unbiased) |
|
stats = torch.cat([mean, std], dim=-1) |
|
if keepdim: |
|
stats = stats.unsqueeze(dim=dim) |
|
return stats |
|
|
|
|
|
class StatsPool(nn.Module): |
|
def forward(self, x): |
|
return statistics_pooling(x) |
|
|
|
|
|
class TDNNLayer(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
bias=False, |
|
config_str='batchnorm-relu'): |
|
super(TDNNLayer, self).__init__() |
|
if padding < 0: |
|
assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format( |
|
kernel_size) |
|
padding = (kernel_size - 1) // 2 * dilation |
|
self.linear = nn.Conv1d(in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=bias) |
|
self.nonlinear = get_nonlinear(config_str, out_channels) |
|
|
|
def forward(self, x): |
|
x = self.linear(x) |
|
x = self.nonlinear(x) |
|
return x |
|
|
|
|
|
class CAMLayer(nn.Module): |
|
def __init__(self, |
|
bn_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
bias, |
|
reduction=2): |
|
super(CAMLayer, self).__init__() |
|
self.linear_local = nn.Conv1d(bn_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=bias) |
|
self.linear1 = nn.Conv1d(bn_channels, bn_channels // reduction, 1) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.linear2 = nn.Conv1d(bn_channels // reduction, out_channels, 1) |
|
self.sigmoid = nn.Sigmoid() |
|
|
|
def forward(self, x): |
|
y = self.linear_local(x) |
|
context = x.mean(-1, keepdim=True)+self.seg_pooling(x) |
|
context = self.relu(self.linear1(context)) |
|
m = self.sigmoid(self.linear2(context)) |
|
return y*m |
|
|
|
def seg_pooling(self, x, seg_len=100, stype='avg'): |
|
if stype == 'avg': |
|
seg = F.avg_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True) |
|
elif stype == 'max': |
|
seg = F.max_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True) |
|
else: |
|
raise ValueError('Wrong segment pooling type.') |
|
shape = seg.shape |
|
seg = seg.unsqueeze(-1).expand(*shape, seg_len).reshape(*shape[:-1], -1) |
|
seg = seg[..., :x.shape[-1]] |
|
return seg |
|
|
|
|
|
class CAMDenseTDNNLayer(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
bn_channels, |
|
kernel_size, |
|
stride=1, |
|
dilation=1, |
|
bias=False, |
|
config_str='batchnorm-relu', |
|
memory_efficient=False): |
|
super(CAMDenseTDNNLayer, self).__init__() |
|
assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format( |
|
kernel_size) |
|
padding = (kernel_size - 1) // 2 * dilation |
|
self.memory_efficient = memory_efficient |
|
self.nonlinear1 = get_nonlinear(config_str, in_channels) |
|
self.linear1 = nn.Conv1d(in_channels, bn_channels, 1, bias=False) |
|
self.nonlinear2 = get_nonlinear(config_str, bn_channels) |
|
self.cam_layer = CAMLayer(bn_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=bias) |
|
|
|
def bn_function(self, x): |
|
return self.linear1(self.nonlinear1(x)) |
|
|
|
def forward(self, x): |
|
if self.training and self.memory_efficient: |
|
x = cp.checkpoint(self.bn_function, x) |
|
else: |
|
x = self.bn_function(x) |
|
x = self.cam_layer(self.nonlinear2(x)) |
|
return x |
|
|
|
|
|
class CAMDenseTDNNBlock(nn.ModuleList): |
|
def __init__(self, |
|
num_layers, |
|
in_channels, |
|
out_channels, |
|
bn_channels, |
|
kernel_size, |
|
stride=1, |
|
dilation=1, |
|
bias=False, |
|
config_str='batchnorm-relu', |
|
memory_efficient=False): |
|
super(CAMDenseTDNNBlock, self).__init__() |
|
for i in range(num_layers): |
|
layer = CAMDenseTDNNLayer(in_channels=in_channels + i * out_channels, |
|
out_channels=out_channels, |
|
bn_channels=bn_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
dilation=dilation, |
|
bias=bias, |
|
config_str=config_str, |
|
memory_efficient=memory_efficient) |
|
self.add_module('tdnnd%d' % (i + 1), layer) |
|
|
|
def forward(self, x): |
|
for layer in self: |
|
x = torch.cat([x, layer(x)], dim=1) |
|
return x |
|
|
|
|
|
class TransitLayer(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
bias=True, |
|
config_str='batchnorm-relu'): |
|
super(TransitLayer, self).__init__() |
|
self.nonlinear = get_nonlinear(config_str, in_channels) |
|
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias) |
|
|
|
def forward(self, x): |
|
x = self.nonlinear(x) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class DenseLayer(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
bias=False, |
|
config_str='batchnorm-relu'): |
|
super(DenseLayer, self).__init__() |
|
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias) |
|
self.nonlinear = get_nonlinear(config_str, out_channels) |
|
|
|
def forward(self, x): |
|
if len(x.shape) == 2: |
|
x = self.linear(x.unsqueeze(dim=-1)).squeeze(dim=-1) |
|
else: |
|
x = self.linear(x) |
|
x = self.nonlinear(x) |
|
return x |
|
|
|
|
|
class BasicResBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, in_planes, planes, stride=1): |
|
super(BasicResBlock, self).__init__() |
|
self.conv1 = nn.Conv2d(in_planes, |
|
planes, |
|
kernel_size=3, |
|
stride=(stride, 1), |
|
padding=1, |
|
bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, |
|
planes, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_planes != self.expansion * planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, |
|
self.expansion * planes, |
|
kernel_size=1, |
|
stride=(stride, 1), |
|
bias=False), |
|
nn.BatchNorm2d(self.expansion * planes)) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.bn2(self.conv2(out)) |
|
out += self.shortcut(x) |
|
out = F.relu(out) |
|
return out |