|
from abc import ABC |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from modules.diffusion_transformer import DiT |
|
from modules.commons import sequence_mask |
|
|
|
from tqdm import tqdm |
|
|
|
class BASECFM(torch.nn.Module, ABC): |
|
def __init__( |
|
self, |
|
args, |
|
): |
|
super().__init__() |
|
self.sigma_min = 1e-6 |
|
|
|
self.estimator = None |
|
|
|
self.in_channels = args.DiT.in_channels |
|
|
|
self.criterion = torch.nn.MSELoss() if args.reg_loss_type == "l2" else torch.nn.L1Loss() |
|
|
|
if hasattr(args.DiT, 'zero_prompt_speech_token'): |
|
self.zero_prompt_speech_token = args.DiT.zero_prompt_speech_token |
|
else: |
|
self.zero_prompt_speech_token = False |
|
|
|
@torch.inference_mode() |
|
def inference(self, mu, x_lens, prompt, style, f0, n_timesteps, temperature=1.0, inference_cfg_rate=0.5): |
|
"""Forward diffusion |
|
|
|
Args: |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): output_mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
n_timesteps (int): number of diffusion steps |
|
temperature (float, optional): temperature for scaling noise. Defaults to 1.0. |
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
cond: Not used but kept for future purposes |
|
|
|
Returns: |
|
sample: generated mel-spectrogram |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
""" |
|
B, T = mu.size(0), mu.size(1) |
|
z = torch.randn([B, self.in_channels, T], device=mu.device) * temperature |
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device) |
|
|
|
return self.solve_euler(z, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate) |
|
|
|
def solve_euler(self, x, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate=0.5): |
|
""" |
|
Fixed euler solver for ODEs. |
|
Args: |
|
x (torch.Tensor): random noise |
|
t_span (torch.Tensor): n_timesteps interpolated |
|
shape: (n_timesteps + 1,) |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): output_mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
cond: Not used but kept for future purposes |
|
""" |
|
t, _, _ = t_span[0], t_span[-1], t_span[1] - t_span[0] |
|
|
|
|
|
|
|
sol = [] |
|
|
|
prompt_len = prompt.size(-1) |
|
prompt_x = torch.zeros_like(x) |
|
prompt_x[..., :prompt_len] = prompt[..., :prompt_len] |
|
x[..., :prompt_len] = 0 |
|
if self.zero_prompt_speech_token: |
|
mu[..., :prompt_len] = 0 |
|
for step in tqdm(range(1, len(t_span))): |
|
dt = t_span[step] - t_span[step - 1] |
|
if inference_cfg_rate > 0: |
|
|
|
stacked_prompt_x = torch.cat([prompt_x, torch.zeros_like(prompt_x)], dim=0) |
|
stacked_style = torch.cat([style, torch.zeros_like(style)], dim=0) |
|
stacked_mu = torch.cat([mu, torch.zeros_like(mu)], dim=0) |
|
stacked_x = torch.cat([x, x], dim=0) |
|
stacked_t = torch.cat([t.unsqueeze(0), t.unsqueeze(0)], dim=0) |
|
|
|
|
|
stacked_dphi_dt = self.estimator( |
|
stacked_x, stacked_prompt_x, x_lens, stacked_t, stacked_style, stacked_mu, |
|
) |
|
|
|
|
|
dphi_dt, cfg_dphi_dt = stacked_dphi_dt.chunk(2, dim=0) |
|
|
|
|
|
dphi_dt = (1.0 + inference_cfg_rate) * dphi_dt - inference_cfg_rate * cfg_dphi_dt |
|
else: |
|
dphi_dt = self.estimator(x, prompt_x, x_lens, t.unsqueeze(0), style, mu) |
|
|
|
x = x + dt * dphi_dt |
|
t = t + dt |
|
sol.append(x) |
|
if step < len(t_span) - 1: |
|
dt = t_span[step + 1] - t |
|
x[:, :, :prompt_len] = 0 |
|
|
|
return sol[-1] |
|
def forward(self, x1, x_lens, prompt_lens, mu, style): |
|
"""Computes diffusion loss |
|
|
|
Args: |
|
x1 (torch.Tensor): Target |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): target mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
spks (torch.Tensor, optional): speaker embedding. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
|
|
Returns: |
|
loss: conditional flow matching loss |
|
y: conditional flow |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
""" |
|
b, _, t = x1.shape |
|
|
|
|
|
t = torch.rand([b, 1, 1], device=mu.device, dtype=x1.dtype) |
|
|
|
z = torch.randn_like(x1) |
|
|
|
y = (1 - (1 - self.sigma_min) * t) * z + t * x1 |
|
u = x1 - (1 - self.sigma_min) * z |
|
|
|
prompt = torch.zeros_like(x1) |
|
for bib in range(b): |
|
prompt[bib, :, :prompt_lens[bib]] = x1[bib, :, :prompt_lens[bib]] |
|
|
|
y[bib, :, :prompt_lens[bib]] = 0 |
|
if self.zero_prompt_speech_token: |
|
mu[bib, :, :prompt_lens[bib]] = 0 |
|
|
|
estimator_out = self.estimator(y, prompt, x_lens, t.squeeze(1).squeeze(1), style, mu, prompt_lens) |
|
loss = 0 |
|
for bib in range(b): |
|
loss += self.criterion(estimator_out[bib, :, prompt_lens[bib]:x_lens[bib]], u[bib, :, prompt_lens[bib]:x_lens[bib]]) |
|
loss /= b |
|
|
|
return loss, estimator_out + (1 - self.sigma_min) * z |
|
|
|
|
|
|
|
class CFM(BASECFM): |
|
def __init__(self, args): |
|
super().__init__( |
|
args |
|
) |
|
if args.dit_type == "DiT": |
|
self.estimator = DiT(args) |
|
else: |
|
raise NotImplementedError(f"Unknown diffusion type {args.dit_type}") |
|
|