|
import os |
|
import sys |
|
from dotenv import load_dotenv |
|
import shutil |
|
|
|
load_dotenv() |
|
|
|
os.environ["OMP_NUM_THREADS"] = "4" |
|
if sys.platform == "darwin": |
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
import multiprocessing |
|
import warnings |
|
import yaml |
|
|
|
warnings.simplefilter("ignore") |
|
|
|
from tqdm import tqdm |
|
from modules.commons import * |
|
import librosa |
|
import torchaudio |
|
import torchaudio.compliance.kaldi as kaldi |
|
|
|
from hf_utils import load_custom_model_from_hf |
|
|
|
import os |
|
import sys |
|
import torch |
|
from modules.commons import str2bool |
|
|
|
device = None |
|
|
|
flag_vc = False |
|
|
|
prompt_condition, mel2, style2 = None, None, None |
|
reference_wav_name = "" |
|
|
|
prompt_len = 3 |
|
ce_dit_difference = 2.0 |
|
fp16 = False |
|
@torch.no_grad() |
|
def custom_infer(model_set, |
|
reference_wav, |
|
new_reference_wav_name, |
|
input_wav_res, |
|
block_frame_16k, |
|
skip_head, |
|
skip_tail, |
|
return_length, |
|
diffusion_steps, |
|
inference_cfg_rate, |
|
max_prompt_length, |
|
cd_difference=2.0, |
|
): |
|
global prompt_condition, mel2, style2 |
|
global reference_wav_name |
|
global prompt_len |
|
global ce_dit_difference |
|
( |
|
model, |
|
semantic_fn, |
|
vocoder_fn, |
|
campplus_model, |
|
to_mel, |
|
mel_fn_args, |
|
) = model_set |
|
sr = mel_fn_args["sampling_rate"] |
|
hop_length = mel_fn_args["hop_size"] |
|
if ce_dit_difference != cd_difference: |
|
ce_dit_difference = cd_difference |
|
print(f"Setting ce_dit_difference to {cd_difference} seconds.") |
|
if prompt_condition is None or reference_wav_name != new_reference_wav_name or prompt_len != max_prompt_length: |
|
prompt_len = max_prompt_length |
|
print(f"Setting max prompt length to {max_prompt_length} seconds.") |
|
reference_wav = reference_wav[:int(sr * prompt_len)] |
|
reference_wav_tensor = torch.from_numpy(reference_wav).to(device) |
|
|
|
ori_waves_16k = torchaudio.functional.resample(reference_wav_tensor, sr, 16000) |
|
S_ori = semantic_fn(ori_waves_16k.unsqueeze(0)) |
|
feat2 = torchaudio.compliance.kaldi.fbank( |
|
ori_waves_16k.unsqueeze(0), num_mel_bins=80, dither=0, sample_frequency=16000 |
|
) |
|
feat2 = feat2 - feat2.mean(dim=0, keepdim=True) |
|
style2 = campplus_model(feat2.unsqueeze(0)) |
|
|
|
mel2 = to_mel(reference_wav_tensor.unsqueeze(0)) |
|
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device) |
|
prompt_condition = model.length_regulator( |
|
S_ori, ylens=target2_lengths, n_quantizers=3, f0=None |
|
)[0] |
|
|
|
reference_wav_name = new_reference_wav_name |
|
|
|
converted_waves_16k = input_wav_res |
|
if device.type == "mps": |
|
start_event = torch.mps.event.Event(enable_timing=True) |
|
end_event = torch.mps.event.Event(enable_timing=True) |
|
torch.mps.synchronize() |
|
else: |
|
start_event = torch.cuda.Event(enable_timing=True) |
|
end_event = torch.cuda.Event(enable_timing=True) |
|
torch.cuda.synchronize() |
|
|
|
start_event.record() |
|
S_alt = semantic_fn(converted_waves_16k.unsqueeze(0)) |
|
end_event.record() |
|
if device.type == "mps": |
|
torch.mps.synchronize() |
|
else: |
|
torch.cuda.synchronize() |
|
elapsed_time_ms = start_event.elapsed_time(end_event) |
|
print(f"Time taken for semantic_fn: {elapsed_time_ms}ms") |
|
|
|
ce_dit_frame_difference = int(ce_dit_difference * 50) |
|
S_alt = S_alt[:, ce_dit_frame_difference:] |
|
target_lengths = torch.LongTensor([(skip_head + return_length + skip_tail - ce_dit_frame_difference) / 50 * sr // hop_length]).to(S_alt.device) |
|
print(f"target_lengths: {target_lengths}") |
|
cond = model.length_regulator( |
|
S_alt, ylens=target_lengths , n_quantizers=3, f0=None |
|
)[0] |
|
cat_condition = torch.cat([prompt_condition, cond], dim=1) |
|
with torch.autocast(device_type=device.type, dtype=torch.float16 if fp16 else torch.float32): |
|
vc_target = model.cfm.inference( |
|
cat_condition, |
|
torch.LongTensor([cat_condition.size(1)]).to(mel2.device), |
|
mel2, |
|
style2, |
|
None, |
|
n_timesteps=diffusion_steps, |
|
inference_cfg_rate=inference_cfg_rate, |
|
) |
|
vc_target = vc_target[:, :, mel2.size(-1) :] |
|
print(f"vc_target.shape: {vc_target.shape}") |
|
vc_wave = vocoder_fn(vc_target).squeeze() |
|
output_len = return_length * sr // 50 |
|
tail_len = skip_tail * sr // 50 |
|
output = vc_wave[-output_len - tail_len: -tail_len] |
|
|
|
return output |
|
|
|
def load_models(args): |
|
global fp16 |
|
fp16 = args.fp16 |
|
print(f"Using fp16: {fp16}") |
|
if args.checkpoint_path is None or args.checkpoint_path == "": |
|
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC", |
|
"DiT_uvit_tat_xlsr_ema.pth", |
|
"config_dit_mel_seed_uvit_xlsr_tiny.yml") |
|
else: |
|
dit_checkpoint_path = args.checkpoint_path |
|
dit_config_path = args.config_path |
|
config = yaml.safe_load(open(dit_config_path, "r")) |
|
model_params = recursive_munch(config["model_params"]) |
|
model_params.dit_type = 'DiT' |
|
model = build_model(model_params, stage="DiT") |
|
hop_length = config["preprocess_params"]["spect_params"]["hop_length"] |
|
sr = config["preprocess_params"]["sr"] |
|
|
|
|
|
model, _, _, _ = load_checkpoint( |
|
model, |
|
None, |
|
dit_checkpoint_path, |
|
load_only_params=True, |
|
ignore_modules=[], |
|
is_distributed=False, |
|
) |
|
for key in model: |
|
model[key].eval() |
|
model[key].to(device) |
|
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) |
|
|
|
|
|
from modules.campplus.DTDNN import CAMPPlus |
|
|
|
campplus_ckpt_path = load_custom_model_from_hf( |
|
"funasr/campplus", "campplus_cn_common.bin", config_filename=None |
|
) |
|
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192) |
|
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu")) |
|
campplus_model.eval() |
|
campplus_model.to(device) |
|
|
|
vocoder_type = model_params.vocoder.type |
|
|
|
if vocoder_type == 'bigvgan': |
|
from modules.bigvgan import bigvgan |
|
bigvgan_name = model_params.vocoder.name |
|
bigvgan_model = bigvgan.BigVGAN.from_pretrained(bigvgan_name, use_cuda_kernel=False) |
|
|
|
bigvgan_model.remove_weight_norm() |
|
bigvgan_model = bigvgan_model.eval().to(device) |
|
vocoder_fn = bigvgan_model |
|
elif vocoder_type == 'hifigan': |
|
from modules.hifigan.generator import HiFTGenerator |
|
from modules.hifigan.f0_predictor import ConvRNNF0Predictor |
|
hift_config = yaml.safe_load(open('configs/hifigan.yml', 'r')) |
|
hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor'])) |
|
hift_path = load_custom_model_from_hf("FunAudioLLM/CosyVoice-300M", 'hift.pt', None) |
|
hift_gen.load_state_dict(torch.load(hift_path, map_location='cpu')) |
|
hift_gen.eval() |
|
hift_gen.to(device) |
|
vocoder_fn = hift_gen |
|
elif vocoder_type == "vocos": |
|
vocos_config = yaml.safe_load(open(model_params.vocoder.vocos.config, 'r')) |
|
vocos_path = model_params.vocoder.vocos.path |
|
vocos_model_params = recursive_munch(vocos_config['model_params']) |
|
vocos = build_model(vocos_model_params, stage='mel_vocos') |
|
vocos_checkpoint_path = vocos_path |
|
vocos, _, _, _ = load_checkpoint(vocos, None, vocos_checkpoint_path, |
|
load_only_params=True, ignore_modules=[], is_distributed=False) |
|
_ = [vocos[key].eval().to(device) for key in vocos] |
|
_ = [vocos[key].to(device) for key in vocos] |
|
total_params = sum(sum(p.numel() for p in vocos[key].parameters() if p.requires_grad) for key in vocos.keys()) |
|
print(f"Vocoder model total parameters: {total_params / 1_000_000:.2f}M") |
|
vocoder_fn = vocos.decoder |
|
else: |
|
raise ValueError(f"Unknown vocoder type: {vocoder_type}") |
|
|
|
speech_tokenizer_type = model_params.speech_tokenizer.type |
|
if speech_tokenizer_type == 'whisper': |
|
|
|
from transformers import AutoFeatureExtractor, WhisperModel |
|
whisper_name = model_params.speech_tokenizer.name |
|
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device) |
|
del whisper_model.decoder |
|
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name) |
|
|
|
def semantic_fn(waves_16k): |
|
ori_inputs = whisper_feature_extractor([waves_16k.squeeze(0).cpu().numpy()], |
|
return_tensors="pt", |
|
return_attention_mask=True) |
|
ori_input_features = whisper_model._mask_input_features( |
|
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device) |
|
with torch.no_grad(): |
|
ori_outputs = whisper_model.encoder( |
|
ori_input_features.to(whisper_model.encoder.dtype), |
|
head_mask=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
) |
|
S_ori = ori_outputs.last_hidden_state.to(torch.float32) |
|
S_ori = S_ori[:, :waves_16k.size(-1) // 320 + 1] |
|
return S_ori |
|
elif speech_tokenizer_type == 'cnhubert': |
|
from transformers import ( |
|
Wav2Vec2FeatureExtractor, |
|
HubertModel, |
|
) |
|
hubert_model_name = config['model_params']['speech_tokenizer']['name'] |
|
hubert_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_name) |
|
hubert_model = HubertModel.from_pretrained(hubert_model_name) |
|
hubert_model = hubert_model.to(device) |
|
hubert_model = hubert_model.eval() |
|
hubert_model = hubert_model.half() |
|
|
|
def semantic_fn(waves_16k): |
|
ori_waves_16k_input_list = [ |
|
waves_16k[bib].cpu().numpy() |
|
for bib in range(len(waves_16k)) |
|
] |
|
ori_inputs = hubert_feature_extractor(ori_waves_16k_input_list, |
|
return_tensors="pt", |
|
return_attention_mask=True, |
|
padding=True, |
|
sampling_rate=16000).to(device) |
|
with torch.no_grad(): |
|
ori_outputs = hubert_model( |
|
ori_inputs.input_values.half(), |
|
) |
|
S_ori = ori_outputs.last_hidden_state.float() |
|
return S_ori |
|
elif speech_tokenizer_type == 'xlsr': |
|
from transformers import ( |
|
Wav2Vec2FeatureExtractor, |
|
Wav2Vec2Model, |
|
) |
|
model_name = config['model_params']['speech_tokenizer']['name'] |
|
output_layer = config['model_params']['speech_tokenizer']['output_layer'] |
|
wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name) |
|
wav2vec_model = Wav2Vec2Model.from_pretrained(model_name) |
|
wav2vec_model.encoder.layers = wav2vec_model.encoder.layers[:output_layer] |
|
wav2vec_model = wav2vec_model.to(device) |
|
wav2vec_model = wav2vec_model.eval() |
|
wav2vec_model = wav2vec_model.half() |
|
|
|
def semantic_fn(waves_16k): |
|
ori_waves_16k_input_list = [ |
|
waves_16k[bib].cpu().numpy() |
|
for bib in range(len(waves_16k)) |
|
] |
|
ori_inputs = wav2vec_feature_extractor(ori_waves_16k_input_list, |
|
return_tensors="pt", |
|
return_attention_mask=True, |
|
padding=True, |
|
sampling_rate=16000).to(device) |
|
with torch.no_grad(): |
|
ori_outputs = wav2vec_model( |
|
ori_inputs.input_values.half(), |
|
) |
|
S_ori = ori_outputs.last_hidden_state.float() |
|
return S_ori |
|
else: |
|
raise ValueError(f"Unknown speech tokenizer type: {speech_tokenizer_type}") |
|
|
|
mel_fn_args = { |
|
"n_fft": config['preprocess_params']['spect_params']['n_fft'], |
|
"win_size": config['preprocess_params']['spect_params']['win_length'], |
|
"hop_size": config['preprocess_params']['spect_params']['hop_length'], |
|
"num_mels": config['preprocess_params']['spect_params']['n_mels'], |
|
"sampling_rate": sr, |
|
"fmin": config['preprocess_params']['spect_params'].get('fmin', 0), |
|
"fmax": None if config['preprocess_params']['spect_params'].get('fmax', "None") == "None" else 8000, |
|
"center": False |
|
} |
|
from modules.audio import mel_spectrogram |
|
|
|
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args) |
|
|
|
return ( |
|
model, |
|
semantic_fn, |
|
vocoder_fn, |
|
campplus_model, |
|
to_mel, |
|
mel_fn_args, |
|
) |
|
|
|
def printt(strr, *args): |
|
if len(args) == 0: |
|
print(strr) |
|
else: |
|
print(strr % args) |
|
|
|
class Config: |
|
def __init__(self): |
|
self.device = device |
|
|
|
|
|
if __name__ == "__main__": |
|
import json |
|
import multiprocessing |
|
import re |
|
import threading |
|
import time |
|
import traceback |
|
from multiprocessing import Queue, cpu_count |
|
import argparse |
|
|
|
import librosa |
|
import numpy as np |
|
import FreeSimpleGUI as sg |
|
import sounddevice as sd |
|
import torch |
|
import torch.nn.functional as F |
|
import torchaudio.transforms as tat |
|
|
|
|
|
current_dir = os.getcwd() |
|
n_cpu = cpu_count() |
|
class GUIConfig: |
|
def __init__(self) -> None: |
|
self.reference_audio_path: str = "" |
|
|
|
self.diffusion_steps: int = 10 |
|
self.sr_type: str = "sr_model" |
|
self.block_time: float = 0.25 |
|
self.threhold: int = -60 |
|
self.crossfade_time: float = 0.05 |
|
self.extra_time_ce: float = 2.5 |
|
self.extra_time: float = 0.5 |
|
self.extra_time_right: float = 2.0 |
|
self.I_noise_reduce: bool = False |
|
self.O_noise_reduce: bool = False |
|
self.inference_cfg_rate: float = 0.7 |
|
self.sg_hostapi: str = "" |
|
self.wasapi_exclusive: bool = False |
|
self.sg_input_device: str = "" |
|
self.sg_output_device: str = "" |
|
|
|
|
|
class GUI: |
|
def __init__(self, args) -> None: |
|
self.gui_config = GUIConfig() |
|
self.config = Config() |
|
self.function = "vc" |
|
self.delay_time = 0 |
|
self.hostapis = None |
|
self.input_devices = None |
|
self.output_devices = None |
|
self.input_devices_indices = None |
|
self.output_devices_indices = None |
|
self.stream = None |
|
self.model_set = load_models(args) |
|
from funasr import AutoModel |
|
self.vad_model = AutoModel(model="fsmn-vad", model_revision="v2.0.4") |
|
self.update_devices() |
|
self.launcher() |
|
|
|
def load(self): |
|
try: |
|
os.makedirs("configs/inuse", exist_ok=True) |
|
if not os.path.exists("configs/inuse/config.json"): |
|
shutil.copy("configs/config.json", "configs/inuse/config.json") |
|
with open("configs/inuse/config.json", "r") as j: |
|
data = json.load(j) |
|
data["sr_model"] = data["sr_type"] == "sr_model" |
|
data["sr_device"] = data["sr_type"] == "sr_device" |
|
if data["sg_hostapi"] in self.hostapis: |
|
self.update_devices(hostapi_name=data["sg_hostapi"]) |
|
if ( |
|
data["sg_input_device"] not in self.input_devices |
|
or data["sg_output_device"] not in self.output_devices |
|
): |
|
self.update_devices() |
|
data["sg_hostapi"] = self.hostapis[0] |
|
data["sg_input_device"] = self.input_devices[ |
|
self.input_devices_indices.index(sd.default.device[0]) |
|
] |
|
data["sg_output_device"] = self.output_devices[ |
|
self.output_devices_indices.index(sd.default.device[1]) |
|
] |
|
else: |
|
data["sg_hostapi"] = self.hostapis[0] |
|
data["sg_input_device"] = self.input_devices[ |
|
self.input_devices_indices.index(sd.default.device[0]) |
|
] |
|
data["sg_output_device"] = self.output_devices[ |
|
self.output_devices_indices.index(sd.default.device[1]) |
|
] |
|
except: |
|
with open("configs/inuse/config.json", "w") as j: |
|
data = { |
|
"sg_hostapi": self.hostapis[0], |
|
"sg_wasapi_exclusive": False, |
|
"sg_input_device": self.input_devices[ |
|
self.input_devices_indices.index(sd.default.device[0]) |
|
], |
|
"sg_output_device": self.output_devices[ |
|
self.output_devices_indices.index(sd.default.device[1]) |
|
], |
|
"sr_type": "sr_model", |
|
"block_time": 0.3, |
|
"crossfade_length": 0.04, |
|
"extra_time_ce": 2.5, |
|
"extra_time": 0.5, |
|
"extra_time_right": 0.02, |
|
"diffusion_steps": 10, |
|
"inference_cfg_rate": 0.7, |
|
"max_prompt_length": 3.0, |
|
} |
|
data["sr_model"] = data["sr_type"] == "sr_model" |
|
data["sr_device"] = data["sr_type"] == "sr_device" |
|
return data |
|
|
|
def launcher(self): |
|
self.config = Config() |
|
data = self.load() |
|
sg.theme("LightBlue3") |
|
layout = [ |
|
[ |
|
sg.Frame( |
|
title="Load reference audio", |
|
layout=[ |
|
[ |
|
sg.Input( |
|
default_text=data.get("reference_audio_path", ""), |
|
key="reference_audio_path", |
|
), |
|
sg.FileBrowse( |
|
"choose an audio file", |
|
initial_folder=os.path.join( |
|
os.getcwd(), "examples/reference" |
|
), |
|
file_types=[ |
|
("WAV Files", "*.wav"), |
|
("MP3 Files", "*.mp3"), |
|
("FLAC Files", "*.flac"), |
|
("M4A Files", "*.m4a"), |
|
("OGG Files", "*.ogg"), |
|
("Opus Files", "*.opus"), |
|
], |
|
), |
|
], |
|
], |
|
) |
|
], |
|
[ |
|
sg.Frame( |
|
layout=[ |
|
[ |
|
sg.Text("Device type"), |
|
sg.Combo( |
|
self.hostapis, |
|
key="sg_hostapi", |
|
default_value=data.get("sg_hostapi", ""), |
|
enable_events=True, |
|
size=(20, 1), |
|
), |
|
sg.Checkbox( |
|
"WASAPI Exclusive Device", |
|
key="sg_wasapi_exclusive", |
|
default=data.get("sg_wasapi_exclusive", False), |
|
enable_events=True, |
|
), |
|
], |
|
[ |
|
sg.Text("Input Device"), |
|
sg.Combo( |
|
self.input_devices, |
|
key="sg_input_device", |
|
default_value=data.get("sg_input_device", ""), |
|
enable_events=True, |
|
size=(45, 1), |
|
), |
|
], |
|
[ |
|
sg.Text("Output Device"), |
|
sg.Combo( |
|
self.output_devices, |
|
key="sg_output_device", |
|
default_value=data.get("sg_output_device", ""), |
|
enable_events=True, |
|
size=(45, 1), |
|
), |
|
], |
|
[ |
|
sg.Button("Reload devices", key="reload_devices"), |
|
sg.Radio( |
|
"Use model sampling rate", |
|
"sr_type", |
|
key="sr_model", |
|
default=data.get("sr_model", True), |
|
enable_events=True, |
|
), |
|
sg.Radio( |
|
"Use device sampling rate", |
|
"sr_type", |
|
key="sr_device", |
|
default=data.get("sr_device", False), |
|
enable_events=True, |
|
), |
|
sg.Text("Sampling rate:"), |
|
sg.Text("", key="sr_stream"), |
|
], |
|
], |
|
title="Sound Device", |
|
) |
|
], |
|
[ |
|
sg.Frame( |
|
layout=[ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[ |
|
sg.Text("Diffusion steps"), |
|
sg.Slider( |
|
range=(1, 30), |
|
key="diffusion_steps", |
|
resolution=1, |
|
orientation="h", |
|
default_value=data.get("diffusion_steps", 10), |
|
enable_events=True, |
|
), |
|
], |
|
[ |
|
sg.Text("Inference cfg rate"), |
|
sg.Slider( |
|
range=(0.0, 1.0), |
|
key="inference_cfg_rate", |
|
resolution=0.1, |
|
orientation="h", |
|
default_value=data.get("inference_cfg_rate", 0.7), |
|
enable_events=True, |
|
), |
|
], |
|
[ |
|
sg.Text("Max prompt length (s)"), |
|
sg.Slider( |
|
range=(1.0, 20.0), |
|
key="max_prompt_length", |
|
resolution=0.5, |
|
orientation="h", |
|
default_value=data.get("max_prompt_length", 3.0), |
|
enable_events=True, |
|
), |
|
], |
|
], |
|
title="Regular settings", |
|
), |
|
sg.Frame( |
|
layout=[ |
|
[ |
|
sg.Text("Block time"), |
|
sg.Slider( |
|
range=(0.04, 3.0), |
|
key="block_time", |
|
resolution=0.02, |
|
orientation="h", |
|
default_value=data.get("block_time", 1.0), |
|
enable_events=True, |
|
), |
|
], |
|
[ |
|
sg.Text("Crossfade length"), |
|
sg.Slider( |
|
range=(0.02, 0.5), |
|
key="crossfade_length", |
|
resolution=0.02, |
|
orientation="h", |
|
default_value=data.get("crossfade_length", 0.1), |
|
enable_events=True, |
|
), |
|
], |
|
[ |
|
sg.Text("Extra content encoder context time (left)"), |
|
sg.Slider( |
|
range=(0.5, 10.0), |
|
key="extra_time_ce", |
|
resolution=0.1, |
|
orientation="h", |
|
default_value=data.get("extra_time_ce", 5.0), |
|
enable_events=True, |
|
), |
|
], |
|
[ |
|
sg.Text("Extra DiT context time (left)"), |
|
sg.Slider( |
|
range=(0.5, 10.0), |
|
key="extra_time", |
|
resolution=0.1, |
|
orientation="h", |
|
default_value=data.get("extra_time", 5.0), |
|
enable_events=True, |
|
), |
|
], |
|
[ |
|
sg.Text("Extra context time (right)"), |
|
sg.Slider( |
|
range=(0.02, 10.0), |
|
key="extra_time_right", |
|
resolution=0.02, |
|
orientation="h", |
|
default_value=data.get("extra_time_right", 2.0), |
|
enable_events=True, |
|
), |
|
], |
|
], |
|
title="Performance settings", |
|
), |
|
], |
|
[ |
|
sg.Button("Start Voice Conversion", key="start_vc"), |
|
sg.Button("Stop Voice Conversion", key="stop_vc"), |
|
sg.Radio( |
|
"Input listening", |
|
"function", |
|
key="im", |
|
default=False, |
|
enable_events=True, |
|
), |
|
sg.Radio( |
|
"Voice Conversion", |
|
"function", |
|
key="vc", |
|
default=True, |
|
enable_events=True, |
|
), |
|
sg.Text("Algorithm delay (ms):"), |
|
sg.Text("0", key="delay_time"), |
|
sg.Text("Inference time (ms):"), |
|
sg.Text("0", key="infer_time"), |
|
], |
|
] |
|
self.window = sg.Window("Seed-VC - GUI", layout=layout, finalize=True) |
|
self.event_handler() |
|
|
|
def event_handler(self): |
|
global flag_vc |
|
while True: |
|
event, values = self.window.read() |
|
if event == sg.WINDOW_CLOSED: |
|
self.stop_stream() |
|
exit() |
|
if event == "reload_devices" or event == "sg_hostapi": |
|
self.gui_config.sg_hostapi = values["sg_hostapi"] |
|
self.update_devices(hostapi_name=values["sg_hostapi"]) |
|
if self.gui_config.sg_hostapi not in self.hostapis: |
|
self.gui_config.sg_hostapi = self.hostapis[0] |
|
self.window["sg_hostapi"].Update(values=self.hostapis) |
|
self.window["sg_hostapi"].Update(value=self.gui_config.sg_hostapi) |
|
if ( |
|
self.gui_config.sg_input_device not in self.input_devices |
|
and len(self.input_devices) > 0 |
|
): |
|
self.gui_config.sg_input_device = self.input_devices[0] |
|
self.window["sg_input_device"].Update(values=self.input_devices) |
|
self.window["sg_input_device"].Update( |
|
value=self.gui_config.sg_input_device |
|
) |
|
if self.gui_config.sg_output_device not in self.output_devices: |
|
self.gui_config.sg_output_device = self.output_devices[0] |
|
self.window["sg_output_device"].Update(values=self.output_devices) |
|
self.window["sg_output_device"].Update( |
|
value=self.gui_config.sg_output_device |
|
) |
|
if event == "start_vc" and not flag_vc: |
|
if self.set_values(values) == True: |
|
printt("cuda_is_available: %s", torch.cuda.is_available()) |
|
self.start_vc() |
|
settings = { |
|
"reference_audio_path": values["reference_audio_path"], |
|
|
|
"sg_hostapi": values["sg_hostapi"], |
|
"sg_wasapi_exclusive": values["sg_wasapi_exclusive"], |
|
"sg_input_device": values["sg_input_device"], |
|
"sg_output_device": values["sg_output_device"], |
|
"sr_type": ["sr_model", "sr_device"][ |
|
[ |
|
values["sr_model"], |
|
values["sr_device"], |
|
].index(True) |
|
], |
|
|
|
"diffusion_steps": values["diffusion_steps"], |
|
"inference_cfg_rate": values["inference_cfg_rate"], |
|
"max_prompt_length": values["max_prompt_length"], |
|
"block_time": values["block_time"], |
|
"crossfade_length": values["crossfade_length"], |
|
"extra_time_ce": values["extra_time_ce"], |
|
"extra_time": values["extra_time"], |
|
"extra_time_right": values["extra_time_right"], |
|
} |
|
with open("configs/inuse/config.json", "w") as j: |
|
json.dump(settings, j) |
|
if self.stream is not None: |
|
self.delay_time = ( |
|
self.stream.latency[-1] |
|
+ values["block_time"] |
|
+ values["crossfade_length"] |
|
+ values["extra_time_right"] |
|
+ 0.01 |
|
) |
|
self.window["sr_stream"].update(self.gui_config.samplerate) |
|
self.window["delay_time"].update( |
|
int(np.round(self.delay_time * 1000)) |
|
) |
|
|
|
|
|
|
|
elif event == "diffusion_steps": |
|
self.gui_config.diffusion_steps = values["diffusion_steps"] |
|
elif event == "inference_cfg_rate": |
|
self.gui_config.inference_cfg_rate = values["inference_cfg_rate"] |
|
elif event in ["vc", "im"]: |
|
self.function = event |
|
elif event == "stop_vc" or event != "start_vc": |
|
|
|
self.stop_stream() |
|
|
|
def set_values(self, values): |
|
if len(values["reference_audio_path"].strip()) == 0: |
|
sg.popup("Choose an audio file") |
|
return False |
|
pattern = re.compile("[^\x00-\x7F]+") |
|
if pattern.findall(values["reference_audio_path"]): |
|
sg.popup("audio file path contains non-ascii characters") |
|
return False |
|
self.set_devices(values["sg_input_device"], values["sg_output_device"]) |
|
self.gui_config.sg_hostapi = values["sg_hostapi"] |
|
self.gui_config.sg_wasapi_exclusive = values["sg_wasapi_exclusive"] |
|
self.gui_config.sg_input_device = values["sg_input_device"] |
|
self.gui_config.sg_output_device = values["sg_output_device"] |
|
self.gui_config.reference_audio_path = values["reference_audio_path"] |
|
self.gui_config.sr_type = ["sr_model", "sr_device"][ |
|
[ |
|
values["sr_model"], |
|
values["sr_device"], |
|
].index(True) |
|
] |
|
|
|
self.gui_config.diffusion_steps = values["diffusion_steps"] |
|
self.gui_config.inference_cfg_rate = values["inference_cfg_rate"] |
|
self.gui_config.max_prompt_length = values["max_prompt_length"] |
|
self.gui_config.block_time = values["block_time"] |
|
self.gui_config.crossfade_time = values["crossfade_length"] |
|
self.gui_config.extra_time_ce = values["extra_time_ce"] |
|
self.gui_config.extra_time = values["extra_time"] |
|
self.gui_config.extra_time_right = values["extra_time_right"] |
|
return True |
|
|
|
def start_vc(self): |
|
if device.type == "mps": |
|
torch.mps.empty_cache() |
|
else: |
|
torch.cuda.empty_cache() |
|
self.reference_wav, _ = librosa.load( |
|
self.gui_config.reference_audio_path, sr=self.model_set[-1]["sampling_rate"] |
|
) |
|
self.gui_config.samplerate = ( |
|
self.model_set[-1]["sampling_rate"] |
|
if self.gui_config.sr_type == "sr_model" |
|
else self.get_device_samplerate() |
|
) |
|
self.gui_config.channels = self.get_device_channels() |
|
self.zc = self.gui_config.samplerate // 50 |
|
self.block_frame = ( |
|
int( |
|
np.round( |
|
self.gui_config.block_time |
|
* self.gui_config.samplerate |
|
/ self.zc |
|
) |
|
) |
|
* self.zc |
|
) |
|
self.block_frame_16k = 320 * self.block_frame // self.zc |
|
self.crossfade_frame = ( |
|
int( |
|
np.round( |
|
self.gui_config.crossfade_time |
|
* self.gui_config.samplerate |
|
/ self.zc |
|
) |
|
) |
|
* self.zc |
|
) |
|
self.sola_buffer_frame = min(self.crossfade_frame, 4 * self.zc) |
|
self.sola_search_frame = self.zc |
|
self.extra_frame = ( |
|
int( |
|
np.round( |
|
self.gui_config.extra_time_ce |
|
* self.gui_config.samplerate |
|
/ self.zc |
|
) |
|
) |
|
* self.zc |
|
) |
|
self.extra_frame_right = ( |
|
int( |
|
np.round( |
|
self.gui_config.extra_time_right |
|
* self.gui_config.samplerate |
|
/ self.zc |
|
) |
|
) |
|
* self.zc |
|
) |
|
self.input_wav: torch.Tensor = torch.zeros( |
|
self.extra_frame |
|
+ self.crossfade_frame |
|
+ self.sola_search_frame |
|
+ self.block_frame |
|
+ self.extra_frame_right, |
|
device=self.config.device, |
|
dtype=torch.float32, |
|
) |
|
self.input_wav_denoise: torch.Tensor = self.input_wav.clone() |
|
self.input_wav_res: torch.Tensor = torch.zeros( |
|
320 * self.input_wav.shape[0] // self.zc, |
|
device=self.config.device, |
|
dtype=torch.float32, |
|
) |
|
self.rms_buffer: np.ndarray = np.zeros(4 * self.zc, dtype="float32") |
|
self.sola_buffer: torch.Tensor = torch.zeros( |
|
self.sola_buffer_frame, device=self.config.device, dtype=torch.float32 |
|
) |
|
self.nr_buffer: torch.Tensor = self.sola_buffer.clone() |
|
self.output_buffer: torch.Tensor = self.input_wav.clone() |
|
self.skip_head = self.extra_frame // self.zc |
|
self.skip_tail = self.extra_frame_right // self.zc |
|
self.return_length = ( |
|
self.block_frame + self.sola_buffer_frame + self.sola_search_frame |
|
) // self.zc |
|
self.fade_in_window: torch.Tensor = ( |
|
torch.sin( |
|
0.5 |
|
* np.pi |
|
* torch.linspace( |
|
0.0, |
|
1.0, |
|
steps=self.sola_buffer_frame, |
|
device=self.config.device, |
|
dtype=torch.float32, |
|
) |
|
) |
|
** 2 |
|
) |
|
self.fade_out_window: torch.Tensor = 1 - self.fade_in_window |
|
self.resampler = tat.Resample( |
|
orig_freq=self.gui_config.samplerate, |
|
new_freq=16000, |
|
dtype=torch.float32, |
|
).to(self.config.device) |
|
if self.model_set[-1]["sampling_rate"] != self.gui_config.samplerate: |
|
self.resampler2 = tat.Resample( |
|
orig_freq=self.model_set[-1]["sampling_rate"], |
|
new_freq=self.gui_config.samplerate, |
|
dtype=torch.float32, |
|
).to(self.config.device) |
|
else: |
|
self.resampler2 = None |
|
self.vad_cache = {} |
|
self.vad_chunk_size = min(500, 1000 * self.gui_config.block_time) |
|
self.vad_speech_detected = False |
|
self.set_speech_detected_false_at_end_flag = False |
|
self.start_stream() |
|
|
|
def start_stream(self): |
|
global flag_vc |
|
if not flag_vc: |
|
flag_vc = True |
|
if ( |
|
"WASAPI" in self.gui_config.sg_hostapi |
|
and self.gui_config.sg_wasapi_exclusive |
|
): |
|
extra_settings = sd.WasapiSettings(exclusive=True) |
|
else: |
|
extra_settings = None |
|
self.stream = sd.Stream( |
|
callback=self.audio_callback, |
|
blocksize=self.block_frame, |
|
samplerate=self.gui_config.samplerate, |
|
channels=self.gui_config.channels, |
|
dtype="float32", |
|
extra_settings=extra_settings, |
|
) |
|
self.stream.start() |
|
|
|
def stop_stream(self): |
|
global flag_vc |
|
if flag_vc: |
|
flag_vc = False |
|
if self.stream is not None: |
|
self.stream.abort() |
|
self.stream.close() |
|
self.stream = None |
|
|
|
def audio_callback( |
|
self, indata: np.ndarray, outdata: np.ndarray, frames, times, status |
|
): |
|
""" |
|
Audio block callback function |
|
""" |
|
global flag_vc |
|
print(indata.shape) |
|
start_time = time.perf_counter() |
|
indata = librosa.to_mono(indata.T) |
|
|
|
|
|
if device.type == "mps": |
|
start_event = torch.mps.event.Event(enable_timing=True) |
|
end_event = torch.mps.event.Event(enable_timing=True) |
|
torch.mps.synchronize() |
|
else: |
|
start_event = torch.cuda.Event(enable_timing=True) |
|
end_event = torch.cuda.Event(enable_timing=True) |
|
torch.cuda.synchronize() |
|
start_event.record() |
|
indata_16k = librosa.resample(indata, orig_sr=self.gui_config.samplerate, target_sr=16000) |
|
res = self.vad_model.generate(input=indata_16k, cache=self.vad_cache, is_final=False, chunk_size=self.vad_chunk_size) |
|
res_value = res[0]["value"] |
|
print(res_value) |
|
if len(res_value) % 2 == 1 and not self.vad_speech_detected: |
|
self.vad_speech_detected = True |
|
elif len(res_value) % 2 == 1 and self.vad_speech_detected: |
|
self.set_speech_detected_false_at_end_flag = True |
|
end_event.record() |
|
if device.type == "mps": |
|
torch.mps.synchronize() |
|
else: |
|
torch.cuda.synchronize() |
|
elapsed_time_ms = start_event.elapsed_time(end_event) |
|
print(f"Time taken for VAD: {elapsed_time_ms}ms") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.input_wav[: -self.block_frame] = self.input_wav[ |
|
self.block_frame : |
|
].clone() |
|
self.input_wav[-indata.shape[0] :] = torch.from_numpy(indata).to( |
|
self.config.device |
|
) |
|
self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[ |
|
self.block_frame_16k : |
|
].clone() |
|
self.input_wav_res[-320 * (indata.shape[0] // self.zc + 1) :] = ( |
|
|
|
|
|
|
|
torch.from_numpy(librosa.resample(self.input_wav[-indata.shape[0] - 2 * self.zc :].cpu().numpy(), orig_sr=self.gui_config.samplerate, target_sr=16000)[320:]) |
|
) |
|
print(f"preprocess time: {time.perf_counter() - start_time:.2f}") |
|
|
|
if self.function == "vc": |
|
if self.gui_config.extra_time_ce - self.gui_config.extra_time < 0: |
|
raise ValueError("Content encoder extra context must be greater than DiT extra context!") |
|
if device.type == "mps": |
|
start_event = torch.mps.event.Event(enable_timing=True) |
|
end_event = torch.mps.event.Event(enable_timing=True) |
|
torch.mps.synchronize() |
|
else: |
|
start_event = torch.cuda.Event(enable_timing=True) |
|
end_event = torch.cuda.Event(enable_timing=True) |
|
torch.cuda.synchronize() |
|
start_event.record() |
|
infer_wav = custom_infer( |
|
self.model_set, |
|
self.reference_wav, |
|
self.gui_config.reference_audio_path, |
|
self.input_wav_res, |
|
self.block_frame_16k, |
|
self.skip_head, |
|
self.skip_tail, |
|
self.return_length, |
|
int(self.gui_config.diffusion_steps), |
|
self.gui_config.inference_cfg_rate, |
|
self.gui_config.max_prompt_length, |
|
self.gui_config.extra_time_ce - self.gui_config.extra_time, |
|
) |
|
if self.resampler2 is not None: |
|
infer_wav = self.resampler2(infer_wav) |
|
end_event.record() |
|
if device.type == "mps": |
|
torch.mps.synchronize() |
|
else: |
|
torch.cuda.synchronize() |
|
elapsed_time_ms = start_event.elapsed_time(end_event) |
|
print(f"Time taken for VC: {elapsed_time_ms}ms") |
|
if not self.vad_speech_detected: |
|
infer_wav = torch.zeros_like(self.input_wav[self.extra_frame :]) |
|
elif self.gui_config.I_noise_reduce: |
|
infer_wav = self.input_wav_denoise[self.extra_frame :].clone() |
|
else: |
|
infer_wav = self.input_wav[self.extra_frame :].clone() |
|
|
|
|
|
conv_input = infer_wav[ |
|
None, None, : self.sola_buffer_frame + self.sola_search_frame |
|
] |
|
|
|
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :]) |
|
cor_den = torch.sqrt( |
|
F.conv1d( |
|
conv_input**2, |
|
torch.ones(1, 1, self.sola_buffer_frame, device=self.config.device), |
|
) |
|
+ 1e-8 |
|
) |
|
|
|
tensor = cor_nom[0, 0] / cor_den[0, 0] |
|
if tensor.numel() > 1: |
|
if sys.platform == "darwin": |
|
_, sola_offset = torch.max(tensor, dim=0) |
|
sola_offset = sola_offset.item() |
|
else: |
|
sola_offset = torch.argmax(tensor, dim=0).item() |
|
else: |
|
sola_offset = tensor.item() |
|
|
|
print(f"sola_offset = {int(sola_offset)}") |
|
|
|
|
|
infer_wav = infer_wav[sola_offset:] |
|
infer_wav[: self.sola_buffer_frame] *= self.fade_in_window |
|
infer_wav[: self.sola_buffer_frame] += ( |
|
self.sola_buffer * self.fade_out_window |
|
) |
|
self.sola_buffer[:] = infer_wav[ |
|
self.block_frame : self.block_frame + self.sola_buffer_frame |
|
] |
|
outdata[:] = ( |
|
infer_wav[: self.block_frame] |
|
.repeat(self.gui_config.channels, 1) |
|
.t() |
|
.cpu() |
|
.numpy() |
|
) |
|
|
|
total_time = time.perf_counter() - start_time |
|
if flag_vc: |
|
self.window["infer_time"].update(int(total_time * 1000)) |
|
|
|
if self.set_speech_detected_false_at_end_flag: |
|
self.vad_speech_detected = False |
|
self.set_speech_detected_false_at_end_flag = False |
|
|
|
print(f"Infer time: {total_time:.2f}") |
|
|
|
def update_devices(self, hostapi_name=None): |
|
"""Get input and output devices.""" |
|
global flag_vc |
|
flag_vc = False |
|
sd._terminate() |
|
sd._initialize() |
|
devices = sd.query_devices() |
|
hostapis = sd.query_hostapis() |
|
for hostapi in hostapis: |
|
for device_idx in hostapi["devices"]: |
|
devices[device_idx]["hostapi_name"] = hostapi["name"] |
|
self.hostapis = [hostapi["name"] for hostapi in hostapis] |
|
if hostapi_name not in self.hostapis: |
|
hostapi_name = self.hostapis[0] |
|
self.input_devices = [ |
|
d["name"] |
|
for d in devices |
|
if d["max_input_channels"] > 0 and d["hostapi_name"] == hostapi_name |
|
] |
|
self.output_devices = [ |
|
d["name"] |
|
for d in devices |
|
if d["max_output_channels"] > 0 and d["hostapi_name"] == hostapi_name |
|
] |
|
self.input_devices_indices = [ |
|
d["index"] if "index" in d else d["name"] |
|
for d in devices |
|
if d["max_input_channels"] > 0 and d["hostapi_name"] == hostapi_name |
|
] |
|
self.output_devices_indices = [ |
|
d["index"] if "index" in d else d["name"] |
|
for d in devices |
|
if d["max_output_channels"] > 0 and d["hostapi_name"] == hostapi_name |
|
] |
|
|
|
def set_devices(self, input_device, output_device): |
|
"""set input and output devices.""" |
|
sd.default.device[0] = self.input_devices_indices[ |
|
self.input_devices.index(input_device) |
|
] |
|
sd.default.device[1] = self.output_devices_indices[ |
|
self.output_devices.index(output_device) |
|
] |
|
printt("Input device: %s:%s", str(sd.default.device[0]), input_device) |
|
printt("Output device: %s:%s", str(sd.default.device[1]), output_device) |
|
|
|
def get_device_samplerate(self): |
|
return int( |
|
sd.query_devices(device=sd.default.device[0])["default_samplerate"] |
|
) |
|
|
|
def get_device_channels(self): |
|
max_input_channels = sd.query_devices(device=sd.default.device[0])[ |
|
"max_input_channels" |
|
] |
|
max_output_channels = sd.query_devices(device=sd.default.device[1])[ |
|
"max_output_channels" |
|
] |
|
return min(max_input_channels, max_output_channels, 2) |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--checkpoint-path", type=str, default=None, help="Path to the model checkpoint") |
|
parser.add_argument("--config-path", type=str, default=None, help="Path to the vocoder checkpoint") |
|
parser.add_argument("--fp16", type=str2bool, nargs="?", const=True, help="Whether to use fp16", default=True) |
|
parser.add_argument("--gpu", type=int, help="Which GPU id to use", default=0) |
|
args = parser.parse_args() |
|
cuda_target = f"cuda:{args.gpu}" if args.gpu else "cuda" |
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device(cuda_target) |
|
elif torch.backends.mps.is_available(): |
|
device = torch.device("mps") |
|
else: |
|
device = torch.device("cpu") |
|
gui = GUI(args) |