seed-vc-api / train.py
Meet Patel
init commit
95636c5
import os
import sys
os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache'
import torch
import torch.multiprocessing as mp
import random
import librosa
import yaml
import argparse
import torchaudio
import torchaudio.compliance.kaldi as kaldi
import glob
from tqdm import tqdm
import shutil
from modules.commons import recursive_munch, build_model, load_checkpoint
from optimizers import build_optimizer
from data.ft_dataset import build_ft_dataloader
from hf_utils import load_custom_model_from_hf
class Trainer:
def __init__(self,
config_path,
pretrained_ckpt_path,
data_dir,
run_name,
batch_size=0,
num_workers=0,
steps=1000,
save_interval=500,
max_epochs=1000,
device="cuda:0",
):
self.device = device
config = yaml.safe_load(open(config_path))
self.log_dir = os.path.join(config['log_dir'], run_name)
os.makedirs(self.log_dir, exist_ok=True)
# copy config file to log dir
shutil.copyfile(config_path, os.path.join(self.log_dir, os.path.basename(config_path)))
batch_size = config.get('batch_size', 10) if batch_size == 0 else batch_size
self.max_steps = steps
self.n_epochs = max_epochs
self.log_interval = config.get('log_interval', 10)
self.save_interval = save_interval
self.sr = config['preprocess_params'].get('sr', 22050)
self.hop_length = config['preprocess_params']['spect_params'].get('hop_length', 256)
self.win_length = config['preprocess_params']['spect_params'].get('win_length', 1024)
self.n_fft = config['preprocess_params']['spect_params'].get('n_fft', 1024)
preprocess_params = config['preprocess_params']
self.train_dataloader = build_ft_dataloader(
data_dir,
preprocess_params['spect_params'],
self.sr,
batch_size=batch_size,
num_workers=num_workers,
)
self.f0_condition = config['model_params']['DiT'].get('f0_condition', False)
self.build_sv_model(device, config)
self.build_semantic_fn(device, config)
if self.f0_condition:
self.build_f0_fn(device, config)
self.build_converter(device, config)
self.build_vocoder(device, config)
scheduler_params = {
"warmup_steps": 0,
"base_lr": 0.00001,
}
self.model_params = recursive_munch(config['model_params'])
self.model = build_model(self.model_params, stage='DiT')
_ = [self.model[key].to(device) for key in self.model]
self.model.cfm.estimator.setup_caches(max_batch_size=batch_size, max_seq_length=8192)
# initialize optimizers after preparing models for compatibility with FSDP
self.optimizer = build_optimizer({key: self.model[key] for key in self.model},
lr=float(scheduler_params['base_lr']))
if pretrained_ckpt_path is None:
# find latest checkpoint
available_checkpoints = glob.glob(os.path.join(self.log_dir, "DiT_epoch_*_step_*.pth"))
if len(available_checkpoints) > 0:
latest_checkpoint = max(
available_checkpoints, key=lambda x: int(x.split("_")[-1].split(".")[0])
)
earliest_checkpoint = min(
available_checkpoints, key=lambda x: int(x.split("_")[-1].split(".")[0])
)
# delete the earliest checkpoint if we have more than 2
if (
earliest_checkpoint != latest_checkpoint
and len(available_checkpoints) > 2
):
os.remove(earliest_checkpoint)
print(f"Removed {earliest_checkpoint}")
elif config.get('pretrained_model', ''):
latest_checkpoint = load_custom_model_from_hf("Plachta/Seed-VC", config['pretrained_model'], None)
else:
latest_checkpoint = ""
else:
assert os.path.exists(pretrained_ckpt_path), f"Pretrained checkpoint {pretrained_ckpt_path} not found"
latest_checkpoint = pretrained_ckpt_path
if os.path.exists(latest_checkpoint):
self.model, self.optimizer, self.epoch, self.iters = load_checkpoint(
self.model, self.optimizer, latest_checkpoint,
load_only_params=True,
ignore_modules=[],
is_distributed=False
)
print(f"Loaded checkpoint from {latest_checkpoint}")
else:
self.epoch, self.iters = 0, 0
print("Failed to load any checkpoint, training from scratch.")
def build_sv_model(self, device, config):
from modules.campplus.DTDNN import CAMPPlus
self.campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_sd_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
campplus_sd = torch.load(campplus_sd_path, map_location='cpu')
self.campplus_model.load_state_dict(campplus_sd)
self.campplus_model.eval()
self.campplus_model.to(device)
self.sv_fn = self.campplus_model
def build_f0_fn(self, device, config):
from modules.rmvpe import RMVPE
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
self.rmvpe = RMVPE(model_path, is_half=False, device=device)
self.f0_fn = self.rmvpe
def build_converter(self, device, config):
from modules.openvoice.api import ToneColorConverter
ckpt_converter, config_converter = load_custom_model_from_hf("myshell-ai/OpenVoiceV2", "converter/checkpoint.pth", "converter/config.json")
self.tone_color_converter = ToneColorConverter(config_converter, device=device)
self.tone_color_converter.load_ckpt(ckpt_converter)
self.tone_color_converter.model.eval()
se_db_path = load_custom_model_from_hf("Plachta/Seed-VC", "se_db.pt", None)
self.se_db = torch.load(se_db_path, map_location='cpu')
def build_vocoder(self, device, config):
vocoder_type = config['model_params']['vocoder']['type']
vocoder_name = config['model_params']['vocoder'].get('name', None)
if vocoder_type == 'bigvgan':
from modules.bigvgan import bigvgan
self.bigvgan_model = bigvgan.BigVGAN.from_pretrained(vocoder_name, use_cuda_kernel=False)
self.bigvgan_model.remove_weight_norm()
self.bigvgan_model = self.bigvgan_model.eval().to(device)
vocoder_fn = self.bigvgan_model
elif vocoder_type == 'hifigan':
from modules.hifigan.generator import HiFTGenerator
from modules.hifigan.f0_predictor import ConvRNNF0Predictor
hift_config = yaml.safe_load(open('configs/hifigan.yml', 'r'))
hift_path = load_custom_model_from_hf("FunAudioLLM/CosyVoice-300M", 'hift.pt', None)
self.hift_gen = HiFTGenerator(**hift_config['hift'],
f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
self.hift_gen.load_state_dict(torch.load(hift_path, map_location='cpu'))
self.hift_gen.eval()
self.hift_gen.to(device)
vocoder_fn = self.hift_gen
else:
raise ValueError(f"Unsupported vocoder type: {vocoder_type}")
self.vocoder_fn = vocoder_fn
def build_semantic_fn(self, device, config):
speech_tokenizer_type = config['model_params']['speech_tokenizer'].get('type', 'cosyvoice')
if speech_tokenizer_type == 'whisper':
from transformers import AutoFeatureExtractor, WhisperModel
whisper_model_name = config['model_params']['speech_tokenizer']['name']
self.whisper_model = WhisperModel.from_pretrained(whisper_model_name).to(device)
self.whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_model_name)
# remove decoder to save memory
del self.whisper_model.decoder
def semantic_fn(waves_16k):
ori_inputs = self.whisper_feature_extractor(
[w16k.cpu().numpy() for w16k in waves_16k],
return_tensors="pt",
return_attention_mask=True,
sampling_rate=16000,
)
ori_input_features = self.whisper_model._mask_input_features(
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask
).to(device)
with torch.no_grad():
ori_outputs = self.whisper_model.encoder(
ori_input_features.to(self.whisper_model.encoder.dtype),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
S_ori = S_ori[:, :waves_16k.size(-1) // 320 + 1]
return S_ori
elif speech_tokenizer_type == 'xlsr':
from transformers import (
Wav2Vec2FeatureExtractor,
Wav2Vec2Model,
)
model_name = config['model_params']['speech_tokenizer']['name']
output_layer = config['model_params']['speech_tokenizer']['output_layer']
self.wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
self.wav2vec_model = Wav2Vec2Model.from_pretrained(model_name)
self.wav2vec_model.encoder.layers = self.wav2vec_model.encoder.layers[:output_layer]
self.wav2vec_model = self.wav2vec_model.to(device)
self.wav2vec_model = self.wav2vec_model.eval()
self.wav2vec_model = self.wav2vec_model.half()
def semantic_fn(waves_16k):
ori_waves_16k_input_list = [waves_16k[bib].cpu().numpy() for bib in range(len(waves_16k))]
ori_inputs = self.wav2vec_feature_extractor(
ori_waves_16k_input_list,
return_tensors="pt",
return_attention_mask=True,
padding=True,
sampling_rate=16000
).to(device)
with torch.no_grad():
ori_outputs = self.wav2vec_model(
ori_inputs.input_values.half(),
)
S_ori = ori_outputs.last_hidden_state.float()
return S_ori
else:
raise ValueError(f"Unsupported speech tokenizer type: {speech_tokenizer_type}")
self.semantic_fn = semantic_fn
def train_one_step(self, batch):
waves, mels, wave_lengths, mel_input_length = batch
B = waves.size(0)
target_size = mels.size(2)
target = mels
target_lengths = mel_input_length
# get speaker embedding
if self.sr != 22050:
waves_22k = torchaudio.functional.resample(waves, self.sr, 22050)
wave_lengths_22k = (wave_lengths.float() * 22050 / self.sr).long()
else:
waves_22k = waves
wave_lengths_22k = wave_lengths
se_batch = self.tone_color_converter.extract_se(waves_22k, wave_lengths_22k)
ref_se_idx = torch.randint(0, len(self.se_db), (B,))
ref_se = self.se_db[ref_se_idx].to(self.device)
# convert
converted_waves_22k = self.tone_color_converter.convert(
waves_22k, wave_lengths_22k, se_batch, ref_se
).squeeze(1)
if self.sr != 22050:
converted_waves = torchaudio.functional.resample(converted_waves_22k, 22050, self.sr)
else:
converted_waves = converted_waves_22k
waves_16k = torchaudio.functional.resample(waves, self.sr, 16000)
wave_lengths_16k = (wave_lengths.float() * 16000 / self.sr).long()
converted_waves_16k = torchaudio.functional.resample(converted_waves, self.sr, 16000)
# extract S_alt (perturbed speech tokens)
S_ori = self.semantic_fn(waves_16k)
S_alt = self.semantic_fn(converted_waves_16k)
if self.f0_condition:
F0_ori = self.rmvpe.infer_from_audio_batch(waves_16k)
else:
F0_ori = None
# interpolate speech token to match acoustic feature length
alt_cond, _, alt_codes, alt_commitment_loss, alt_codebook_loss = (
self.model.length_regulator(S_alt, ylens=target_lengths, f0=F0_ori)
)
ori_cond, _, ori_codes, ori_commitment_loss, ori_codebook_loss = (
self.model.length_regulator(S_ori, ylens=target_lengths, f0=F0_ori)
)
if alt_commitment_loss is None:
alt_commitment_loss = 0
alt_codebook_loss = 0
ori_commitment_loss = 0
ori_codebook_loss = 0
# randomly set a length as prompt
prompt_len_max = target_lengths - 1
prompt_len = (torch.rand([B], device=alt_cond.device) * prompt_len_max).floor().long()
prompt_len[torch.rand([B], device=alt_cond.device) < 0.1] = 0
# for prompt cond token, use ori_cond instead of alt_cond
cond = alt_cond.clone()
for bib in range(B):
cond[bib, :prompt_len[bib]] = ori_cond[bib, :prompt_len[bib]]
# diffusion target
common_min_len = min(target_size, cond.size(1))
target = target[:, :, :common_min_len]
cond = cond[:, :common_min_len]
target_lengths = torch.clamp(target_lengths, max=common_min_len)
x = target
# style vectors are extracted from the prompt only
feat_list = []
for bib in range(B):
feat = kaldi.fbank(
waves_16k[bib:bib + 1, :wave_lengths_16k[bib]],
num_mel_bins=80,
dither=0,
sample_frequency=16000
)
feat = feat - feat.mean(dim=0, keepdim=True)
feat_list.append(feat)
y_list = []
with torch.no_grad():
for feat in feat_list:
y = self.sv_fn(feat.unsqueeze(0))
y_list.append(y)
y = torch.cat(y_list, dim=0)
loss, _ = self.model.cfm(x, target_lengths, prompt_len, cond, y)
loss_total = (
loss +
(alt_commitment_loss + ori_commitment_loss) * 0.05 +
(ori_codebook_loss + alt_codebook_loss) * 0.15
)
self.optimizer.zero_grad()
loss_total.backward()
torch.nn.utils.clip_grad_norm_(self.model.cfm.parameters(), 10.0)
torch.nn.utils.clip_grad_norm_(self.model.length_regulator.parameters(), 10.0)
self.optimizer.step('cfm')
self.optimizer.step('length_regulator')
self.optimizer.scheduler(key='cfm')
self.optimizer.scheduler(key='length_regulator')
return loss.detach().item()
def train_one_epoch(self):
_ = [self.model[key].train() for key in self.model]
for i, batch in enumerate(tqdm(self.train_dataloader)):
batch = [b.to(self.device) for b in batch]
loss = self.train_one_step(batch)
self.ema_loss = (
self.ema_loss * self.loss_smoothing_rate + loss * (1 - self.loss_smoothing_rate)
if self.iters > 0 else loss
)
if self.iters % self.log_interval == 0:
print(f"epoch {self.epoch}, step {self.iters}, loss: {self.ema_loss}")
self.iters += 1
if self.iters >= self.max_steps:
break
if self.iters % self.save_interval == 0:
print('Saving..')
state = {
'net': {key: self.model[key].state_dict() for key in self.model},
'optimizer': self.optimizer.state_dict(),
'scheduler': self.optimizer.scheduler_state_dict(),
'iters': self.iters,
'epoch': self.epoch,
}
save_path = os.path.join(
self.log_dir,
f'DiT_epoch_{self.epoch:05d}_step_{self.iters:05d}.pth'
)
torch.save(state, save_path)
# find all checkpoints and remove old ones
checkpoints = glob.glob(os.path.join(self.log_dir, 'DiT_epoch_*.pth'))
if len(checkpoints) > 2:
checkpoints.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]))
for cp in checkpoints[:-2]:
os.remove(cp)
def train(self):
self.ema_loss = 0
self.loss_smoothing_rate = 0.99
for epoch in range(self.n_epochs):
self.epoch = epoch
self.train_one_epoch()
if self.iters >= self.max_steps:
break
print('Saving final model..')
state = {
'net': {key: self.model[key].state_dict() for key in self.model},
}
os.makedirs(self.log_dir, exist_ok=True)
save_path = os.path.join(self.log_dir, 'ft_model.pth')
torch.save(state, save_path)
print(f"Final model saved at {save_path}")
def main(args):
trainer = Trainer(
config_path=args.config,
pretrained_ckpt_path=args.pretrained_ckpt,
data_dir=args.dataset_dir,
run_name=args.run_name,
batch_size=args.batch_size,
steps=args.max_steps,
max_epochs=args.max_epochs,
save_interval=args.save_every,
num_workers=args.num_workers,
device=args.device
)
trainer.train()
if __name__ == '__main__':
if sys.platform == 'win32':
mp.freeze_support()
mp.set_start_method('spawn', force=True)
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='./configs/presets/config_dit_mel_seed_uvit_xlsr_tiny.yml')
parser.add_argument('--pretrained-ckpt', type=str, default=None)
parser.add_argument('--dataset-dir', type=str, default='/path/to/dataset')
parser.add_argument('--run-name', type=str, default='my_run')
parser.add_argument('--batch-size', type=int, default=2)
parser.add_argument('--max-steps', type=int, default=1000)
parser.add_argument('--max-epochs', type=int, default=1000)
parser.add_argument('--save-every', type=int, default=500)
parser.add_argument('--num-workers', type=int, default=0)
parser.add_argument("--gpu", type=int, help="Which GPU id to use", default=0)
args = parser.parse_args()
if torch.backends.mps.is_available():
args.device = "mps"
else:
args.device = f"cuda:{args.gpu}" if args.gpu else "cuda:0"
main(args)