|
import os |
|
import sys |
|
os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache' |
|
import torch |
|
import torch.multiprocessing as mp |
|
import random |
|
import librosa |
|
import yaml |
|
import argparse |
|
import torchaudio |
|
import torchaudio.compliance.kaldi as kaldi |
|
import glob |
|
from tqdm import tqdm |
|
import shutil |
|
|
|
from modules.commons import recursive_munch, build_model, load_checkpoint |
|
from optimizers import build_optimizer |
|
from data.ft_dataset import build_ft_dataloader |
|
from hf_utils import load_custom_model_from_hf |
|
|
|
class Trainer: |
|
def __init__(self, |
|
config_path, |
|
pretrained_ckpt_path, |
|
data_dir, |
|
run_name, |
|
batch_size=0, |
|
num_workers=0, |
|
steps=1000, |
|
save_interval=500, |
|
max_epochs=1000, |
|
device="cuda:0", |
|
): |
|
self.device = device |
|
config = yaml.safe_load(open(config_path)) |
|
self.log_dir = os.path.join(config['log_dir'], run_name) |
|
os.makedirs(self.log_dir, exist_ok=True) |
|
|
|
shutil.copyfile(config_path, os.path.join(self.log_dir, os.path.basename(config_path))) |
|
batch_size = config.get('batch_size', 10) if batch_size == 0 else batch_size |
|
self.max_steps = steps |
|
|
|
self.n_epochs = max_epochs |
|
self.log_interval = config.get('log_interval', 10) |
|
self.save_interval = save_interval |
|
|
|
self.sr = config['preprocess_params'].get('sr', 22050) |
|
self.hop_length = config['preprocess_params']['spect_params'].get('hop_length', 256) |
|
self.win_length = config['preprocess_params']['spect_params'].get('win_length', 1024) |
|
self.n_fft = config['preprocess_params']['spect_params'].get('n_fft', 1024) |
|
preprocess_params = config['preprocess_params'] |
|
|
|
self.train_dataloader = build_ft_dataloader( |
|
data_dir, |
|
preprocess_params['spect_params'], |
|
self.sr, |
|
batch_size=batch_size, |
|
num_workers=num_workers, |
|
) |
|
self.f0_condition = config['model_params']['DiT'].get('f0_condition', False) |
|
self.build_sv_model(device, config) |
|
self.build_semantic_fn(device, config) |
|
if self.f0_condition: |
|
self.build_f0_fn(device, config) |
|
self.build_converter(device, config) |
|
self.build_vocoder(device, config) |
|
|
|
scheduler_params = { |
|
"warmup_steps": 0, |
|
"base_lr": 0.00001, |
|
} |
|
|
|
self.model_params = recursive_munch(config['model_params']) |
|
self.model = build_model(self.model_params, stage='DiT') |
|
|
|
_ = [self.model[key].to(device) for key in self.model] |
|
self.model.cfm.estimator.setup_caches(max_batch_size=batch_size, max_seq_length=8192) |
|
|
|
|
|
self.optimizer = build_optimizer({key: self.model[key] for key in self.model}, |
|
lr=float(scheduler_params['base_lr'])) |
|
|
|
if pretrained_ckpt_path is None: |
|
|
|
available_checkpoints = glob.glob(os.path.join(self.log_dir, "DiT_epoch_*_step_*.pth")) |
|
if len(available_checkpoints) > 0: |
|
latest_checkpoint = max( |
|
available_checkpoints, key=lambda x: int(x.split("_")[-1].split(".")[0]) |
|
) |
|
earliest_checkpoint = min( |
|
available_checkpoints, key=lambda x: int(x.split("_")[-1].split(".")[0]) |
|
) |
|
|
|
if ( |
|
earliest_checkpoint != latest_checkpoint |
|
and len(available_checkpoints) > 2 |
|
): |
|
os.remove(earliest_checkpoint) |
|
print(f"Removed {earliest_checkpoint}") |
|
elif config.get('pretrained_model', ''): |
|
latest_checkpoint = load_custom_model_from_hf("Plachta/Seed-VC", config['pretrained_model'], None) |
|
else: |
|
latest_checkpoint = "" |
|
else: |
|
assert os.path.exists(pretrained_ckpt_path), f"Pretrained checkpoint {pretrained_ckpt_path} not found" |
|
latest_checkpoint = pretrained_ckpt_path |
|
|
|
if os.path.exists(latest_checkpoint): |
|
self.model, self.optimizer, self.epoch, self.iters = load_checkpoint( |
|
self.model, self.optimizer, latest_checkpoint, |
|
load_only_params=True, |
|
ignore_modules=[], |
|
is_distributed=False |
|
) |
|
print(f"Loaded checkpoint from {latest_checkpoint}") |
|
else: |
|
self.epoch, self.iters = 0, 0 |
|
print("Failed to load any checkpoint, training from scratch.") |
|
|
|
def build_sv_model(self, device, config): |
|
from modules.campplus.DTDNN import CAMPPlus |
|
self.campplus_model = CAMPPlus(feat_dim=80, embedding_size=192) |
|
campplus_sd_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None) |
|
campplus_sd = torch.load(campplus_sd_path, map_location='cpu') |
|
self.campplus_model.load_state_dict(campplus_sd) |
|
self.campplus_model.eval() |
|
self.campplus_model.to(device) |
|
self.sv_fn = self.campplus_model |
|
|
|
def build_f0_fn(self, device, config): |
|
from modules.rmvpe import RMVPE |
|
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None) |
|
self.rmvpe = RMVPE(model_path, is_half=False, device=device) |
|
self.f0_fn = self.rmvpe |
|
|
|
def build_converter(self, device, config): |
|
from modules.openvoice.api import ToneColorConverter |
|
ckpt_converter, config_converter = load_custom_model_from_hf("myshell-ai/OpenVoiceV2", "converter/checkpoint.pth", "converter/config.json") |
|
self.tone_color_converter = ToneColorConverter(config_converter, device=device) |
|
self.tone_color_converter.load_ckpt(ckpt_converter) |
|
self.tone_color_converter.model.eval() |
|
se_db_path = load_custom_model_from_hf("Plachta/Seed-VC", "se_db.pt", None) |
|
self.se_db = torch.load(se_db_path, map_location='cpu') |
|
|
|
def build_vocoder(self, device, config): |
|
vocoder_type = config['model_params']['vocoder']['type'] |
|
vocoder_name = config['model_params']['vocoder'].get('name', None) |
|
if vocoder_type == 'bigvgan': |
|
from modules.bigvgan import bigvgan |
|
self.bigvgan_model = bigvgan.BigVGAN.from_pretrained(vocoder_name, use_cuda_kernel=False) |
|
self.bigvgan_model.remove_weight_norm() |
|
self.bigvgan_model = self.bigvgan_model.eval().to(device) |
|
vocoder_fn = self.bigvgan_model |
|
elif vocoder_type == 'hifigan': |
|
from modules.hifigan.generator import HiFTGenerator |
|
from modules.hifigan.f0_predictor import ConvRNNF0Predictor |
|
hift_config = yaml.safe_load(open('configs/hifigan.yml', 'r')) |
|
hift_path = load_custom_model_from_hf("FunAudioLLM/CosyVoice-300M", 'hift.pt', None) |
|
self.hift_gen = HiFTGenerator(**hift_config['hift'], |
|
f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor'])) |
|
self.hift_gen.load_state_dict(torch.load(hift_path, map_location='cpu')) |
|
self.hift_gen.eval() |
|
self.hift_gen.to(device) |
|
vocoder_fn = self.hift_gen |
|
else: |
|
raise ValueError(f"Unsupported vocoder type: {vocoder_type}") |
|
self.vocoder_fn = vocoder_fn |
|
|
|
def build_semantic_fn(self, device, config): |
|
speech_tokenizer_type = config['model_params']['speech_tokenizer'].get('type', 'cosyvoice') |
|
if speech_tokenizer_type == 'whisper': |
|
from transformers import AutoFeatureExtractor, WhisperModel |
|
whisper_model_name = config['model_params']['speech_tokenizer']['name'] |
|
self.whisper_model = WhisperModel.from_pretrained(whisper_model_name).to(device) |
|
self.whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_model_name) |
|
|
|
del self.whisper_model.decoder |
|
|
|
def semantic_fn(waves_16k): |
|
ori_inputs = self.whisper_feature_extractor( |
|
[w16k.cpu().numpy() for w16k in waves_16k], |
|
return_tensors="pt", |
|
return_attention_mask=True, |
|
sampling_rate=16000, |
|
) |
|
ori_input_features = self.whisper_model._mask_input_features( |
|
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask |
|
).to(device) |
|
with torch.no_grad(): |
|
ori_outputs = self.whisper_model.encoder( |
|
ori_input_features.to(self.whisper_model.encoder.dtype), |
|
head_mask=None, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict=True, |
|
) |
|
S_ori = ori_outputs.last_hidden_state.to(torch.float32) |
|
S_ori = S_ori[:, :waves_16k.size(-1) // 320 + 1] |
|
return S_ori |
|
|
|
elif speech_tokenizer_type == 'xlsr': |
|
from transformers import ( |
|
Wav2Vec2FeatureExtractor, |
|
Wav2Vec2Model, |
|
) |
|
model_name = config['model_params']['speech_tokenizer']['name'] |
|
output_layer = config['model_params']['speech_tokenizer']['output_layer'] |
|
self.wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name) |
|
self.wav2vec_model = Wav2Vec2Model.from_pretrained(model_name) |
|
self.wav2vec_model.encoder.layers = self.wav2vec_model.encoder.layers[:output_layer] |
|
self.wav2vec_model = self.wav2vec_model.to(device) |
|
self.wav2vec_model = self.wav2vec_model.eval() |
|
self.wav2vec_model = self.wav2vec_model.half() |
|
|
|
def semantic_fn(waves_16k): |
|
ori_waves_16k_input_list = [waves_16k[bib].cpu().numpy() for bib in range(len(waves_16k))] |
|
ori_inputs = self.wav2vec_feature_extractor( |
|
ori_waves_16k_input_list, |
|
return_tensors="pt", |
|
return_attention_mask=True, |
|
padding=True, |
|
sampling_rate=16000 |
|
).to(device) |
|
with torch.no_grad(): |
|
ori_outputs = self.wav2vec_model( |
|
ori_inputs.input_values.half(), |
|
) |
|
S_ori = ori_outputs.last_hidden_state.float() |
|
return S_ori |
|
else: |
|
raise ValueError(f"Unsupported speech tokenizer type: {speech_tokenizer_type}") |
|
self.semantic_fn = semantic_fn |
|
|
|
def train_one_step(self, batch): |
|
waves, mels, wave_lengths, mel_input_length = batch |
|
|
|
B = waves.size(0) |
|
target_size = mels.size(2) |
|
target = mels |
|
target_lengths = mel_input_length |
|
|
|
|
|
if self.sr != 22050: |
|
waves_22k = torchaudio.functional.resample(waves, self.sr, 22050) |
|
wave_lengths_22k = (wave_lengths.float() * 22050 / self.sr).long() |
|
else: |
|
waves_22k = waves |
|
wave_lengths_22k = wave_lengths |
|
se_batch = self.tone_color_converter.extract_se(waves_22k, wave_lengths_22k) |
|
|
|
ref_se_idx = torch.randint(0, len(self.se_db), (B,)) |
|
ref_se = self.se_db[ref_se_idx].to(self.device) |
|
|
|
|
|
converted_waves_22k = self.tone_color_converter.convert( |
|
waves_22k, wave_lengths_22k, se_batch, ref_se |
|
).squeeze(1) |
|
|
|
if self.sr != 22050: |
|
converted_waves = torchaudio.functional.resample(converted_waves_22k, 22050, self.sr) |
|
else: |
|
converted_waves = converted_waves_22k |
|
|
|
waves_16k = torchaudio.functional.resample(waves, self.sr, 16000) |
|
wave_lengths_16k = (wave_lengths.float() * 16000 / self.sr).long() |
|
converted_waves_16k = torchaudio.functional.resample(converted_waves, self.sr, 16000) |
|
|
|
|
|
S_ori = self.semantic_fn(waves_16k) |
|
S_alt = self.semantic_fn(converted_waves_16k) |
|
|
|
if self.f0_condition: |
|
F0_ori = self.rmvpe.infer_from_audio_batch(waves_16k) |
|
else: |
|
F0_ori = None |
|
|
|
|
|
alt_cond, _, alt_codes, alt_commitment_loss, alt_codebook_loss = ( |
|
self.model.length_regulator(S_alt, ylens=target_lengths, f0=F0_ori) |
|
) |
|
ori_cond, _, ori_codes, ori_commitment_loss, ori_codebook_loss = ( |
|
self.model.length_regulator(S_ori, ylens=target_lengths, f0=F0_ori) |
|
) |
|
if alt_commitment_loss is None: |
|
alt_commitment_loss = 0 |
|
alt_codebook_loss = 0 |
|
ori_commitment_loss = 0 |
|
ori_codebook_loss = 0 |
|
|
|
|
|
prompt_len_max = target_lengths - 1 |
|
prompt_len = (torch.rand([B], device=alt_cond.device) * prompt_len_max).floor().long() |
|
prompt_len[torch.rand([B], device=alt_cond.device) < 0.1] = 0 |
|
|
|
|
|
cond = alt_cond.clone() |
|
for bib in range(B): |
|
cond[bib, :prompt_len[bib]] = ori_cond[bib, :prompt_len[bib]] |
|
|
|
|
|
common_min_len = min(target_size, cond.size(1)) |
|
target = target[:, :, :common_min_len] |
|
cond = cond[:, :common_min_len] |
|
target_lengths = torch.clamp(target_lengths, max=common_min_len) |
|
x = target |
|
|
|
|
|
feat_list = [] |
|
for bib in range(B): |
|
feat = kaldi.fbank( |
|
waves_16k[bib:bib + 1, :wave_lengths_16k[bib]], |
|
num_mel_bins=80, |
|
dither=0, |
|
sample_frequency=16000 |
|
) |
|
feat = feat - feat.mean(dim=0, keepdim=True) |
|
feat_list.append(feat) |
|
y_list = [] |
|
with torch.no_grad(): |
|
for feat in feat_list: |
|
y = self.sv_fn(feat.unsqueeze(0)) |
|
y_list.append(y) |
|
y = torch.cat(y_list, dim=0) |
|
|
|
loss, _ = self.model.cfm(x, target_lengths, prompt_len, cond, y) |
|
|
|
loss_total = ( |
|
loss + |
|
(alt_commitment_loss + ori_commitment_loss) * 0.05 + |
|
(ori_codebook_loss + alt_codebook_loss) * 0.15 |
|
) |
|
|
|
self.optimizer.zero_grad() |
|
loss_total.backward() |
|
torch.nn.utils.clip_grad_norm_(self.model.cfm.parameters(), 10.0) |
|
torch.nn.utils.clip_grad_norm_(self.model.length_regulator.parameters(), 10.0) |
|
self.optimizer.step('cfm') |
|
self.optimizer.step('length_regulator') |
|
self.optimizer.scheduler(key='cfm') |
|
self.optimizer.scheduler(key='length_regulator') |
|
|
|
return loss.detach().item() |
|
|
|
def train_one_epoch(self): |
|
_ = [self.model[key].train() for key in self.model] |
|
for i, batch in enumerate(tqdm(self.train_dataloader)): |
|
batch = [b.to(self.device) for b in batch] |
|
loss = self.train_one_step(batch) |
|
self.ema_loss = ( |
|
self.ema_loss * self.loss_smoothing_rate + loss * (1 - self.loss_smoothing_rate) |
|
if self.iters > 0 else loss |
|
) |
|
if self.iters % self.log_interval == 0: |
|
print(f"epoch {self.epoch}, step {self.iters}, loss: {self.ema_loss}") |
|
self.iters += 1 |
|
|
|
if self.iters >= self.max_steps: |
|
break |
|
|
|
if self.iters % self.save_interval == 0: |
|
print('Saving..') |
|
state = { |
|
'net': {key: self.model[key].state_dict() for key in self.model}, |
|
'optimizer': self.optimizer.state_dict(), |
|
'scheduler': self.optimizer.scheduler_state_dict(), |
|
'iters': self.iters, |
|
'epoch': self.epoch, |
|
} |
|
save_path = os.path.join( |
|
self.log_dir, |
|
f'DiT_epoch_{self.epoch:05d}_step_{self.iters:05d}.pth' |
|
) |
|
torch.save(state, save_path) |
|
|
|
|
|
checkpoints = glob.glob(os.path.join(self.log_dir, 'DiT_epoch_*.pth')) |
|
if len(checkpoints) > 2: |
|
checkpoints.sort(key=lambda x: int(x.split('_')[-1].split('.')[0])) |
|
for cp in checkpoints[:-2]: |
|
os.remove(cp) |
|
|
|
def train(self): |
|
self.ema_loss = 0 |
|
self.loss_smoothing_rate = 0.99 |
|
for epoch in range(self.n_epochs): |
|
self.epoch = epoch |
|
self.train_one_epoch() |
|
if self.iters >= self.max_steps: |
|
break |
|
|
|
print('Saving final model..') |
|
state = { |
|
'net': {key: self.model[key].state_dict() for key in self.model}, |
|
} |
|
os.makedirs(self.log_dir, exist_ok=True) |
|
save_path = os.path.join(self.log_dir, 'ft_model.pth') |
|
torch.save(state, save_path) |
|
print(f"Final model saved at {save_path}") |
|
|
|
|
|
def main(args): |
|
trainer = Trainer( |
|
config_path=args.config, |
|
pretrained_ckpt_path=args.pretrained_ckpt, |
|
data_dir=args.dataset_dir, |
|
run_name=args.run_name, |
|
batch_size=args.batch_size, |
|
steps=args.max_steps, |
|
max_epochs=args.max_epochs, |
|
save_interval=args.save_every, |
|
num_workers=args.num_workers, |
|
device=args.device |
|
) |
|
trainer.train() |
|
|
|
if __name__ == '__main__': |
|
if sys.platform == 'win32': |
|
mp.freeze_support() |
|
mp.set_start_method('spawn', force=True) |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--config', type=str, default='./configs/presets/config_dit_mel_seed_uvit_xlsr_tiny.yml') |
|
parser.add_argument('--pretrained-ckpt', type=str, default=None) |
|
parser.add_argument('--dataset-dir', type=str, default='/path/to/dataset') |
|
parser.add_argument('--run-name', type=str, default='my_run') |
|
parser.add_argument('--batch-size', type=int, default=2) |
|
parser.add_argument('--max-steps', type=int, default=1000) |
|
parser.add_argument('--max-epochs', type=int, default=1000) |
|
parser.add_argument('--save-every', type=int, default=500) |
|
parser.add_argument('--num-workers', type=int, default=0) |
|
parser.add_argument("--gpu", type=int, help="Which GPU id to use", default=0) |
|
args = parser.parse_args() |
|
if torch.backends.mps.is_available(): |
|
args.device = "mps" |
|
else: |
|
args.device = f"cuda:{args.gpu}" if args.gpu else "cuda:0" |
|
main(args) |
|
|