import os import sys os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache' import torch import torch.multiprocessing as mp import random import librosa import yaml import argparse import torchaudio import torchaudio.compliance.kaldi as kaldi import glob from tqdm import tqdm import shutil from modules.commons import recursive_munch, build_model, load_checkpoint from optimizers import build_optimizer from data.ft_dataset import build_ft_dataloader from hf_utils import load_custom_model_from_hf class Trainer: def __init__(self, config_path, pretrained_ckpt_path, data_dir, run_name, batch_size=0, num_workers=0, steps=1000, save_interval=500, max_epochs=1000, device="cuda:0", ): self.device = device config = yaml.safe_load(open(config_path)) self.log_dir = os.path.join(config['log_dir'], run_name) os.makedirs(self.log_dir, exist_ok=True) # copy config file to log dir shutil.copyfile(config_path, os.path.join(self.log_dir, os.path.basename(config_path))) batch_size = config.get('batch_size', 10) if batch_size == 0 else batch_size self.max_steps = steps self.n_epochs = max_epochs self.log_interval = config.get('log_interval', 10) self.save_interval = save_interval self.sr = config['preprocess_params'].get('sr', 22050) self.hop_length = config['preprocess_params']['spect_params'].get('hop_length', 256) self.win_length = config['preprocess_params']['spect_params'].get('win_length', 1024) self.n_fft = config['preprocess_params']['spect_params'].get('n_fft', 1024) preprocess_params = config['preprocess_params'] self.train_dataloader = build_ft_dataloader( data_dir, preprocess_params['spect_params'], self.sr, batch_size=batch_size, num_workers=num_workers, ) self.f0_condition = config['model_params']['DiT'].get('f0_condition', False) self.build_sv_model(device, config) self.build_semantic_fn(device, config) if self.f0_condition: self.build_f0_fn(device, config) self.build_converter(device, config) self.build_vocoder(device, config) scheduler_params = { "warmup_steps": 0, "base_lr": 0.00001, } self.model_params = recursive_munch(config['model_params']) self.model = build_model(self.model_params, stage='DiT') _ = [self.model[key].to(device) for key in self.model] self.model.cfm.estimator.setup_caches(max_batch_size=batch_size, max_seq_length=8192) # initialize optimizers after preparing models for compatibility with FSDP self.optimizer = build_optimizer({key: self.model[key] for key in self.model}, lr=float(scheduler_params['base_lr'])) if pretrained_ckpt_path is None: # find latest checkpoint available_checkpoints = glob.glob(os.path.join(self.log_dir, "DiT_epoch_*_step_*.pth")) if len(available_checkpoints) > 0: latest_checkpoint = max( available_checkpoints, key=lambda x: int(x.split("_")[-1].split(".")[0]) ) earliest_checkpoint = min( available_checkpoints, key=lambda x: int(x.split("_")[-1].split(".")[0]) ) # delete the earliest checkpoint if we have more than 2 if ( earliest_checkpoint != latest_checkpoint and len(available_checkpoints) > 2 ): os.remove(earliest_checkpoint) print(f"Removed {earliest_checkpoint}") elif config.get('pretrained_model', ''): latest_checkpoint = load_custom_model_from_hf("Plachta/Seed-VC", config['pretrained_model'], None) else: latest_checkpoint = "" else: assert os.path.exists(pretrained_ckpt_path), f"Pretrained checkpoint {pretrained_ckpt_path} not found" latest_checkpoint = pretrained_ckpt_path if os.path.exists(latest_checkpoint): self.model, self.optimizer, self.epoch, self.iters = load_checkpoint( self.model, self.optimizer, latest_checkpoint, load_only_params=True, ignore_modules=[], is_distributed=False ) print(f"Loaded checkpoint from {latest_checkpoint}") else: self.epoch, self.iters = 0, 0 print("Failed to load any checkpoint, training from scratch.") def build_sv_model(self, device, config): from modules.campplus.DTDNN import CAMPPlus self.campplus_model = CAMPPlus(feat_dim=80, embedding_size=192) campplus_sd_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None) campplus_sd = torch.load(campplus_sd_path, map_location='cpu') self.campplus_model.load_state_dict(campplus_sd) self.campplus_model.eval() self.campplus_model.to(device) self.sv_fn = self.campplus_model def build_f0_fn(self, device, config): from modules.rmvpe import RMVPE model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None) self.rmvpe = RMVPE(model_path, is_half=False, device=device) self.f0_fn = self.rmvpe def build_converter(self, device, config): from modules.openvoice.api import ToneColorConverter ckpt_converter, config_converter = load_custom_model_from_hf("myshell-ai/OpenVoiceV2", "converter/checkpoint.pth", "converter/config.json") self.tone_color_converter = ToneColorConverter(config_converter, device=device) self.tone_color_converter.load_ckpt(ckpt_converter) self.tone_color_converter.model.eval() se_db_path = load_custom_model_from_hf("Plachta/Seed-VC", "se_db.pt", None) self.se_db = torch.load(se_db_path, map_location='cpu') def build_vocoder(self, device, config): vocoder_type = config['model_params']['vocoder']['type'] vocoder_name = config['model_params']['vocoder'].get('name', None) if vocoder_type == 'bigvgan': from modules.bigvgan import bigvgan self.bigvgan_model = bigvgan.BigVGAN.from_pretrained(vocoder_name, use_cuda_kernel=False) self.bigvgan_model.remove_weight_norm() self.bigvgan_model = self.bigvgan_model.eval().to(device) vocoder_fn = self.bigvgan_model elif vocoder_type == 'hifigan': from modules.hifigan.generator import HiFTGenerator from modules.hifigan.f0_predictor import ConvRNNF0Predictor hift_config = yaml.safe_load(open('configs/hifigan.yml', 'r')) hift_path = load_custom_model_from_hf("FunAudioLLM/CosyVoice-300M", 'hift.pt', None) self.hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor'])) self.hift_gen.load_state_dict(torch.load(hift_path, map_location='cpu')) self.hift_gen.eval() self.hift_gen.to(device) vocoder_fn = self.hift_gen else: raise ValueError(f"Unsupported vocoder type: {vocoder_type}") self.vocoder_fn = vocoder_fn def build_semantic_fn(self, device, config): speech_tokenizer_type = config['model_params']['speech_tokenizer'].get('type', 'cosyvoice') if speech_tokenizer_type == 'whisper': from transformers import AutoFeatureExtractor, WhisperModel whisper_model_name = config['model_params']['speech_tokenizer']['name'] self.whisper_model = WhisperModel.from_pretrained(whisper_model_name).to(device) self.whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_model_name) # remove decoder to save memory del self.whisper_model.decoder def semantic_fn(waves_16k): ori_inputs = self.whisper_feature_extractor( [w16k.cpu().numpy() for w16k in waves_16k], return_tensors="pt", return_attention_mask=True, sampling_rate=16000, ) ori_input_features = self.whisper_model._mask_input_features( ori_inputs.input_features, attention_mask=ori_inputs.attention_mask ).to(device) with torch.no_grad(): ori_outputs = self.whisper_model.encoder( ori_input_features.to(self.whisper_model.encoder.dtype), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ) S_ori = ori_outputs.last_hidden_state.to(torch.float32) S_ori = S_ori[:, :waves_16k.size(-1) // 320 + 1] return S_ori elif speech_tokenizer_type == 'xlsr': from transformers import ( Wav2Vec2FeatureExtractor, Wav2Vec2Model, ) model_name = config['model_params']['speech_tokenizer']['name'] output_layer = config['model_params']['speech_tokenizer']['output_layer'] self.wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name) self.wav2vec_model = Wav2Vec2Model.from_pretrained(model_name) self.wav2vec_model.encoder.layers = self.wav2vec_model.encoder.layers[:output_layer] self.wav2vec_model = self.wav2vec_model.to(device) self.wav2vec_model = self.wav2vec_model.eval() self.wav2vec_model = self.wav2vec_model.half() def semantic_fn(waves_16k): ori_waves_16k_input_list = [waves_16k[bib].cpu().numpy() for bib in range(len(waves_16k))] ori_inputs = self.wav2vec_feature_extractor( ori_waves_16k_input_list, return_tensors="pt", return_attention_mask=True, padding=True, sampling_rate=16000 ).to(device) with torch.no_grad(): ori_outputs = self.wav2vec_model( ori_inputs.input_values.half(), ) S_ori = ori_outputs.last_hidden_state.float() return S_ori else: raise ValueError(f"Unsupported speech tokenizer type: {speech_tokenizer_type}") self.semantic_fn = semantic_fn def train_one_step(self, batch): waves, mels, wave_lengths, mel_input_length = batch B = waves.size(0) target_size = mels.size(2) target = mels target_lengths = mel_input_length # get speaker embedding if self.sr != 22050: waves_22k = torchaudio.functional.resample(waves, self.sr, 22050) wave_lengths_22k = (wave_lengths.float() * 22050 / self.sr).long() else: waves_22k = waves wave_lengths_22k = wave_lengths se_batch = self.tone_color_converter.extract_se(waves_22k, wave_lengths_22k) ref_se_idx = torch.randint(0, len(self.se_db), (B,)) ref_se = self.se_db[ref_se_idx].to(self.device) # convert converted_waves_22k = self.tone_color_converter.convert( waves_22k, wave_lengths_22k, se_batch, ref_se ).squeeze(1) if self.sr != 22050: converted_waves = torchaudio.functional.resample(converted_waves_22k, 22050, self.sr) else: converted_waves = converted_waves_22k waves_16k = torchaudio.functional.resample(waves, self.sr, 16000) wave_lengths_16k = (wave_lengths.float() * 16000 / self.sr).long() converted_waves_16k = torchaudio.functional.resample(converted_waves, self.sr, 16000) # extract S_alt (perturbed speech tokens) S_ori = self.semantic_fn(waves_16k) S_alt = self.semantic_fn(converted_waves_16k) if self.f0_condition: F0_ori = self.rmvpe.infer_from_audio_batch(waves_16k) else: F0_ori = None # interpolate speech token to match acoustic feature length alt_cond, _, alt_codes, alt_commitment_loss, alt_codebook_loss = ( self.model.length_regulator(S_alt, ylens=target_lengths, f0=F0_ori) ) ori_cond, _, ori_codes, ori_commitment_loss, ori_codebook_loss = ( self.model.length_regulator(S_ori, ylens=target_lengths, f0=F0_ori) ) if alt_commitment_loss is None: alt_commitment_loss = 0 alt_codebook_loss = 0 ori_commitment_loss = 0 ori_codebook_loss = 0 # randomly set a length as prompt prompt_len_max = target_lengths - 1 prompt_len = (torch.rand([B], device=alt_cond.device) * prompt_len_max).floor().long() prompt_len[torch.rand([B], device=alt_cond.device) < 0.1] = 0 # for prompt cond token, use ori_cond instead of alt_cond cond = alt_cond.clone() for bib in range(B): cond[bib, :prompt_len[bib]] = ori_cond[bib, :prompt_len[bib]] # diffusion target common_min_len = min(target_size, cond.size(1)) target = target[:, :, :common_min_len] cond = cond[:, :common_min_len] target_lengths = torch.clamp(target_lengths, max=common_min_len) x = target # style vectors are extracted from the prompt only feat_list = [] for bib in range(B): feat = kaldi.fbank( waves_16k[bib:bib + 1, :wave_lengths_16k[bib]], num_mel_bins=80, dither=0, sample_frequency=16000 ) feat = feat - feat.mean(dim=0, keepdim=True) feat_list.append(feat) y_list = [] with torch.no_grad(): for feat in feat_list: y = self.sv_fn(feat.unsqueeze(0)) y_list.append(y) y = torch.cat(y_list, dim=0) loss, _ = self.model.cfm(x, target_lengths, prompt_len, cond, y) loss_total = ( loss + (alt_commitment_loss + ori_commitment_loss) * 0.05 + (ori_codebook_loss + alt_codebook_loss) * 0.15 ) self.optimizer.zero_grad() loss_total.backward() torch.nn.utils.clip_grad_norm_(self.model.cfm.parameters(), 10.0) torch.nn.utils.clip_grad_norm_(self.model.length_regulator.parameters(), 10.0) self.optimizer.step('cfm') self.optimizer.step('length_regulator') self.optimizer.scheduler(key='cfm') self.optimizer.scheduler(key='length_regulator') return loss.detach().item() def train_one_epoch(self): _ = [self.model[key].train() for key in self.model] for i, batch in enumerate(tqdm(self.train_dataloader)): batch = [b.to(self.device) for b in batch] loss = self.train_one_step(batch) self.ema_loss = ( self.ema_loss * self.loss_smoothing_rate + loss * (1 - self.loss_smoothing_rate) if self.iters > 0 else loss ) if self.iters % self.log_interval == 0: print(f"epoch {self.epoch}, step {self.iters}, loss: {self.ema_loss}") self.iters += 1 if self.iters >= self.max_steps: break if self.iters % self.save_interval == 0: print('Saving..') state = { 'net': {key: self.model[key].state_dict() for key in self.model}, 'optimizer': self.optimizer.state_dict(), 'scheduler': self.optimizer.scheduler_state_dict(), 'iters': self.iters, 'epoch': self.epoch, } save_path = os.path.join( self.log_dir, f'DiT_epoch_{self.epoch:05d}_step_{self.iters:05d}.pth' ) torch.save(state, save_path) # find all checkpoints and remove old ones checkpoints = glob.glob(os.path.join(self.log_dir, 'DiT_epoch_*.pth')) if len(checkpoints) > 2: checkpoints.sort(key=lambda x: int(x.split('_')[-1].split('.')[0])) for cp in checkpoints[:-2]: os.remove(cp) def train(self): self.ema_loss = 0 self.loss_smoothing_rate = 0.99 for epoch in range(self.n_epochs): self.epoch = epoch self.train_one_epoch() if self.iters >= self.max_steps: break print('Saving final model..') state = { 'net': {key: self.model[key].state_dict() for key in self.model}, } os.makedirs(self.log_dir, exist_ok=True) save_path = os.path.join(self.log_dir, 'ft_model.pth') torch.save(state, save_path) print(f"Final model saved at {save_path}") def main(args): trainer = Trainer( config_path=args.config, pretrained_ckpt_path=args.pretrained_ckpt, data_dir=args.dataset_dir, run_name=args.run_name, batch_size=args.batch_size, steps=args.max_steps, max_epochs=args.max_epochs, save_interval=args.save_every, num_workers=args.num_workers, device=args.device ) trainer.train() if __name__ == '__main__': if sys.platform == 'win32': mp.freeze_support() mp.set_start_method('spawn', force=True) parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, default='./configs/presets/config_dit_mel_seed_uvit_xlsr_tiny.yml') parser.add_argument('--pretrained-ckpt', type=str, default=None) parser.add_argument('--dataset-dir', type=str, default='/path/to/dataset') parser.add_argument('--run-name', type=str, default='my_run') parser.add_argument('--batch-size', type=int, default=2) parser.add_argument('--max-steps', type=int, default=1000) parser.add_argument('--max-epochs', type=int, default=1000) parser.add_argument('--save-every', type=int, default=500) parser.add_argument('--num-workers', type=int, default=0) parser.add_argument("--gpu", type=int, help="Which GPU id to use", default=0) args = parser.parse_args() if torch.backends.mps.is_available(): args.device = "mps" else: args.device = f"cuda:{args.gpu}" if args.gpu else "cuda:0" main(args)