File size: 1,176 Bytes
f72f467
 
c48bee5
 
bec1dde
 
c48bee5
6d0b7dd
658d5dc
6d0b7dd
658d5dc
 
 
6d0b7dd
 
 
bec1dde
 
658d5dc
bec1dde
4f28d2a
bec1dde
6d0b7dd
 
 
 
 
bec1dde
 
 
 
 
 
6d0b7dd
658d5dc
6d0b7dd
658d5dc
6d0b7dd
 
 
 
 
658d5dc
6d0b7dd
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
license: apache-2.0
language:
- en
tags:
- hawk
pipeline_tag: text-generation
---
# HawkLM-demo

<p align="center">
        <a href="https://huggingface.co/Rexopia/HawkLM-demo">HawkLM-demo 🤗</a>&nbsp | <a href="https://huggingface.co/Rexopia/HawkLM-Chat-demo">HawkLM-Chat-demo 🤗</a>
</p>

## Model Details

- **Developed by:** Rexopia
- **Reach me:** [email protected]
- **Language(s):** English
- **License:** Apache license 2.0
- **Pretrained model:** True
- **Demo version:** True

## How to Get Started with the Model

Use the code below to get started with the model.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("Rexopia/HawkLM-demo", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Rexopia/HawkLM-demo", device_map="auto", trust_remote_code=True)
```

## Training Data

We sampled English-only corpus from Redpajama-1T datasets without any Arxiv and GitHub tags. As the demo version presented, we only trained 3.3Bil tokens.

## Evaluation

[More Information Needed]

## Citation

[More Information Needed]

## Model Card Contact

[More Information Needed]