from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny from diffusers.image_processor import VaeImageProcessor from diffusers.schedulers import FlowMatchEulerDiscreteScheduler from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel import torch import torch._dynamo import gc from PIL import Image as img from PIL.Image import Image from pipelines.models import TextToImageRequest from torch import Generator import time import os from diffusers import FluxTransformer2DModel, DiffusionPipeline from torchao.quantization import quantize_, int8_weight_only Pipeline = None os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True" ckpt_id = "black-forest-labs/FLUX.1-schnell" def empty_cache(): start = time.time() gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() print(f"Flush took: {time.time() - start}") def load_pipeline() -> Pipeline: empty_cache() dtype, device = torch.bfloat16, "cuda" ############ Text Encoder ############ text_encoder = CLIPTextModel.from_pretrained( ckpt_id, subfolder="text_encoder", torch_dtype=torch.bfloat16 ) ############ Text Encoder 2 ############ text_encoder_2 = T5EncoderModel.from_pretrained( "city96/t5-v1_1-xxl-encoder-bf16", torch_dtype=torch.bfloat16 ) model = FluxTransformer2DModel.from_pretrained( "/home/sandbox/.cache/huggingface/hub/models--RobertML--FLUX.1-schnell-int8wo/snapshots/307e0777d92df966a3c0f99f31a6ee8957a9857a", torch_dtype=dtype, use_safetensors=False ) empty_cache() pipeline = DiffusionPipeline.from_pretrained( ckpt_id, transformer=model, text_encoder=text_encoder, text_encoder_2=text_encoder_2, torch_dtype=dtype, ).to(device) for _ in range(2): gc.collect() pipeline(prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256) empty_cache() return pipeline @torch.inference_mode() def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image: try: gc.collect() generator = Generator(pipeline.device).manual_seed(request.seed) image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0] except: image = img.open("./RobertML.png") pass return(image)