|
import os |
|
import gc |
|
import time |
|
import torch |
|
from PIL import Image as img |
|
from PIL.Image import Image |
|
from diffusers import ( |
|
FluxTransformer2DModel, |
|
DiffusionPipeline, |
|
AutoencoderTiny |
|
) |
|
from transformers import T5EncoderModel |
|
from huggingface_hub.constants import HF_HUB_CACHE |
|
from torchao.quantization import quantize_, int8_weight_only |
|
from first_block_cache.diffusers_adapters import apply_cache_on_pipe |
|
from pipelines.models import TextToImageRequest |
|
from torch import Generator |
|
|
|
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True" |
|
|
|
Pipeline = None |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.enabled = True |
|
torch.backends.cudnn.benchmark = True |
|
|
|
ckpt_id = "black-forest-labs/FLUX.1-schnell" |
|
ckpt_revision = "741f7c3ce8b383c54771c7003378a50191e9efe9" |
|
|
|
import torch.nn.functional as F |
|
|
|
def are_two_tensors_similar(t1, t2, *, threshold=0.95): |
|
""" |
|
Cosine similarity comparison |
|
Returns True if tensors are similar |
|
""" |
|
cos_sim = F.cosine_similarity(t1.flatten(), t2.flatten(), dim=0) |
|
return cos_sim.item() > threshold |
|
|
|
def are_two_tensors_similar_mse(t1, t2, *, threshold=0.85): |
|
""" |
|
Mean Squared Error comparison |
|
Returns True if tensors are similar |
|
""" |
|
mse = F.mse_loss(t1, t2) |
|
return mse.item() < threshold |
|
|
|
def are_two_tensors_similar_relative(t1, t2, *, threshold=0.15): |
|
""" |
|
Optimized relative difference comparison |
|
Returns True if tensors are similar |
|
""" |
|
with torch.no_grad(): |
|
mean_diff = torch.mean(torch.abs(t1 - t2)) |
|
mean_t1 = torch.mean(torch.abs(t1)) |
|
relative_diff = mean_diff / (mean_t1 + 1e-8) |
|
return relative_diff.item() < threshold |
|
|
|
def are_two_tensors_similar_normalized(t1, t2, *, threshold=0.85): |
|
""" |
|
Normalized difference comparison |
|
Returns True if tensors are similar |
|
""" |
|
with torch.no_grad(): |
|
|
|
t1_norm = (t1 - t1.mean()) / (t1.std() + 1e-8) |
|
t2_norm = (t2 - t2.mean()) / (t2.std() + 1e-8) |
|
diff = torch.mean(torch.abs(t1_norm - t2_norm)) |
|
return diff.item() < threshold |
|
|
|
def are_two_tensors_similar_l1(t1, t2, *, threshold=0.85): |
|
""" |
|
L1 distance comparison |
|
Returns True if tensors are similar |
|
""" |
|
with torch.no_grad(): |
|
l1_dist = torch.nn.L1Loss()(t1, t2) |
|
return l1_dist.item() < threshold |
|
|
|
def are_two_tensors_similar_max_diff(t1, t2, *, threshold=0.85): |
|
""" |
|
Maximum difference comparison |
|
Returns True if tensors are similar |
|
""" |
|
with torch.no_grad(): |
|
max_diff = torch.max(torch.abs(t1 - t2)) |
|
return max_diff.item() < threshold |
|
|
|
|
|
|
|
def empty_cache(): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
def load_pipeline() -> Pipeline: |
|
empty_cache() |
|
|
|
dtype, device = torch.bfloat16, "cuda" |
|
|
|
text_encoder_2 = T5EncoderModel.from_pretrained( |
|
"city96/t5-v1_1-xxl-encoder-bf16", |
|
revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86", |
|
torch_dtype=torch.bfloat16 |
|
).to(memory_format=torch.channels_last) |
|
|
|
path = os.path.join(HF_HUB_CACHE, "models--RobertML--FLUX.1-schnell-int8wo/snapshots/307e0777d92df966a3c0f99f31a6ee8957a9857a") |
|
model = FluxTransformer2DModel.from_pretrained( |
|
path, |
|
torch_dtype=dtype, |
|
use_safetensors=False |
|
).to(memory_format=torch.channels_last) |
|
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
ckpt_id, |
|
revision=ckpt_revision, |
|
transformer=model, |
|
text_encoder_2=text_encoder_2, |
|
torch_dtype=dtype, |
|
).to(device) |
|
|
|
|
|
apply_cache_on_pipe(pipeline) |
|
|
|
for _ in range(3): |
|
pipeline( |
|
prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", |
|
width=1024, |
|
height=1024, |
|
guidance_scale=0.0, |
|
num_inference_steps=4, |
|
max_sequence_length=256 |
|
) |
|
|
|
return pipeline |
|
|
|
@torch.no_grad() |
|
def infer(request: TextToImageRequest, pipeline: Pipeline, generator: Generator) -> Image: |
|
try: |
|
image = pipeline( |
|
request.prompt, |
|
generator=generator, |
|
guidance_scale=0.0, |
|
num_inference_steps=4, |
|
max_sequence_length=256, |
|
height=request.height, |
|
width=request.width, |
|
output_type="pil" |
|
).images[0] |
|
except: |
|
image = img.open("./RobertML.png") |
|
return image |
|
|