File size: 8,422 Bytes
0cbcfbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.

import types
from pathlib import Path

import tensorrt as trt
import torch
from cache_diffusion.cachify import CACHED_PIPE, get_model
from cuda import cudart
from diffusers.models.transformers.transformer_sd3 import SD3Transformer2DModel
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from pipe.config import ONNX_CONFIG
from pipe.models.sd3 import sd3_forward
from pipe.models.sdxl import (
    cachecrossattnupblock2d_forward,
    cacheunet_forward,
    cacheupblock2d_forward,
)
from polygraphy.backend.trt import (
    CreateConfig,
    Profile,
    engine_from_network,
    network_from_onnx_path,
    save_engine,
)
from torch.onnx import export as onnx_export

from .utils import Engine


def replace_new_forward(backbone):
    if backbone.__class__ == UNet2DConditionModel:
        backbone.forward = types.MethodType(cacheunet_forward, backbone)
        for upsample_block in backbone.up_blocks:
            if (
                hasattr(upsample_block, "has_cross_attention")
                and upsample_block.has_cross_attention
            ):
                upsample_block.forward = types.MethodType(
                    cachecrossattnupblock2d_forward, upsample_block
                )
            else:
                upsample_block.forward = types.MethodType(cacheupblock2d_forward, upsample_block)
    elif backbone.__class__ == SD3Transformer2DModel:
        backbone.forward = types.MethodType(sd3_forward, backbone)


def get_input_info(dummy_dict, info: str = None, batch_size: int = 1):
    return_val = [] if info == "profile_shapes" or info == "input_names" else {}

    def collect_leaf_keys(d):
        for key, value in d.items():
            if isinstance(value, dict):
                collect_leaf_keys(value)
            else:
                value = (value[0] * batch_size,) + value[1:]
                if info == "profile_shapes":
                    return_val.append((key, value))  # type: ignore
                elif info == "profile_shapes_dict":
                    return_val[key] = value  # type: ignore
                elif info == "dummy_input":
                    return_val[key] = torch.ones(value).half().cuda()  # type: ignore
                elif info == "input_names":
                    return_val.append(key)  # type: ignore

    collect_leaf_keys(dummy_dict)
    return return_val


def complie2trt(cls, onnx_path: Path, engine_path: Path, batch_size: int = 1):
    subdirs = [f for f in onnx_path.iterdir() if f.is_dir()]
    for subdir in subdirs:
        if subdir.name not in ONNX_CONFIG[cls].keys():
            continue
        model_path = subdir / "model.onnx"
        plan_path = engine_path / f"{subdir.name}.plan"
        if not plan_path.exists():
            print(f"Building {str(model_path)}")
            build_profile = Profile()
            profile_shapes = get_input_info(
                ONNX_CONFIG[cls][subdir.name]["dummy_input"], "profile_shapes", batch_size
            )
            for input_name, input_shape in profile_shapes:
                min_input_shape = (2,) + input_shape[1:]
                build_profile.add(input_name, min_input_shape, input_shape, input_shape)
            block_network = network_from_onnx_path(
                str(model_path), flags=[trt.OnnxParserFlag.NATIVE_INSTANCENORM], strongly_typed=True
            )
            build_config = CreateConfig(
                builder_optimization_level=6,
                tf32=True,
                #bf16=True,
                profiles=[build_profile],
            )
            engine = engine_from_network(
                block_network,
                config=build_config,
            )
            save_engine(engine, path=plan_path)
        else:
            print(f"{str(model_path)} already exists!")


def get_total_device_memory(backbone):
    max_device_memory = 0
    for _, engine in backbone.engines.items():
        max_device_memory = max(max_device_memory, engine.engine.device_memory_size)
    return max_device_memory


def load_engines(backbone, engine_path: Path, batch_size: int = 1):
    backbone.engines = {}
    for f in engine_path.iterdir():
        if f.is_file():
            eng = Engine()
            eng.load(str(f))
            backbone.engines[f"{f.stem}"] = eng
    _, shared_device_memory = cudart.cudaMalloc(get_total_device_memory(backbone))
    for engine in backbone.engines.values():
        engine.activate(shared_device_memory)
    backbone.cuda_stream = cudart.cudaStreamCreate()[1]
    for block_name in backbone.engines.keys():
        backbone.engines[block_name].allocate_buffers(
            shape_dict=get_input_info(
                ONNX_CONFIG[backbone.__class__][block_name]["dummy_input"],
                "profile_shapes_dict",
                batch_size,
            ),
            device=backbone.device,
            batch_size=batch_size,
        )
    # TODO: Free and clean up the origin pytorch cuda memory


def export_onnx(backbone, onnx_path: Path):
    for name, module in backbone.named_modules():
        if isinstance(module, CACHED_PIPE[backbone.__class__]):
            _onnx_dir = onnx_path.joinpath(f"{name}")
            _onnx_file = _onnx_dir.joinpath("model.onnx")
            if not _onnx_file.exists():
                _onnx_dir.mkdir(parents=True, exist_ok=True)
                dummy_input = get_input_info(
                    ONNX_CONFIG[backbone.__class__][f"{name}"]["dummy_input"], "dummy_input"
                )
                input_names = get_input_info(
                    ONNX_CONFIG[backbone.__class__][f"{name}"]["dummy_input"], "input_names"
                )
                output_names = ONNX_CONFIG[backbone.__class__][f"{name}"]["output_names"]
                onnx_export(
                    module,
                    args=dummy_input,
                    f=_onnx_file.as_posix(),
                    input_names=input_names,
                    output_names=output_names,
                    dynamic_axes=ONNX_CONFIG[backbone.__class__][f"{name}"]["dynamic_axes"],
                    do_constant_folding=True,
                    opset_version=17,
                )
            else:
                print(f"{str(_onnx_file)} alread exists!")


def warm_up(backbone, batch_size: int = 1):
    print("Warming-up TensorRT engines...")
    for name, engine in backbone.engines.items():
        dummy_input = get_input_info(
            ONNX_CONFIG[backbone.__class__][name]["dummy_input"], "dummy_input", batch_size
        )
        _ = engine(dummy_input, backbone.cuda_stream)


def teardown(pipe):
    backbone = get_model(pipe)
    for engine in backbone.engines.values():
        del engine

    cudart.cudaStreamDestroy(backbone.cuda_stream)
    del backbone.cuda_stream


def compile(pipe, onnx_path: Path, engine_path: Path, batch_size: int = 1):
    backbone = get_model(pipe)
    onnx_path.mkdir(parents=True, exist_ok=True)
    engine_path.mkdir(parents=True, exist_ok=True)

    replace_new_forward(backbone)
    export_onnx(backbone, onnx_path)
    complie2trt(backbone.__class__, onnx_path, engine_path, batch_size)
    load_engines(backbone, engine_path, batch_size)
    warm_up(backbone, batch_size)
    backbone.use_trt_infer = True