File size: 6,949 Bytes
0cbcfbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.

from typing import Any, Dict, List, Optional, Union

import torch
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.utils import (
    USE_PEFT_BACKEND,
    is_torch_version,
    scale_lora_layers,
    unscale_lora_layers,
)


def sd3_forward(
    self,
    hidden_states: torch.FloatTensor,
    encoder_hidden_states: torch.FloatTensor = None,
    pooled_projections: torch.FloatTensor = None,
    timestep: torch.LongTensor = None,
    block_controlnet_hidden_states: List = None,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    return_dict: bool = True,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
    """
    The [`SD3Transformer2DModel`] forward method.

    Args:
        hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
            Input `hidden_states`.
        encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
            Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
        pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
            from the embeddings of input conditions.
        timestep ( `torch.LongTensor`):
            Used to indicate denoising step.
        block_controlnet_hidden_states: (`list` of `torch.Tensor`):
            A list of tensors that if specified are added to the residuals of transformer blocks.
        joint_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
            tuple.

    Returns:
        If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
        `tuple` where the first element is the sample tensor.
    """
    if joint_attention_kwargs is not None:
        joint_attention_kwargs = joint_attention_kwargs.copy()
        lora_scale = joint_attention_kwargs.pop("scale", 1.0)
    else:
        lora_scale = 1.0

    if USE_PEFT_BACKEND:
        # weight the lora layers by setting `lora_scale` for each PEFT layer
        scale_lora_layers(self, lora_scale)

    height, width = hidden_states.shape[-2:]

    hidden_states = self.pos_embed(hidden_states)  # takes care of adding positional embeddings too.
    temb = self.time_text_embed(timestep, pooled_projections)
    encoder_hidden_states = self.context_embedder(encoder_hidden_states)

    for index_block, block in enumerate(self.transformer_blocks):
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module, return_dict=None):
                def custom_forward(*inputs):
                    if return_dict is not None:
                        return module(*inputs, return_dict=return_dict)
                    else:
                        return module(*inputs)

                return custom_forward

            ckpt_kwargs: Dict[str, Any] = (
                {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
            )
            encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
                create_custom_forward(block),
                hidden_states,
                encoder_hidden_states,
                temb,
                **ckpt_kwargs,
            )

        else:
            if hasattr(self, "use_trt_infer") and self.use_trt_infer:
                feed_dict = {
                    "hidden_states": hidden_states,
                    "encoder_hidden_states": encoder_hidden_states,
                    "temb": temb,
                }
                _results = self.engines[f"transformer_blocks.{index_block}"](
                    feed_dict, self.cuda_stream
                )
                if index_block != 23:
                    encoder_hidden_states = _results["encoder_hidden_states_out"]
                hidden_states = _results["hidden_states_out"]
            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=temb,
                )

        # controlnet residual
        if block_controlnet_hidden_states is not None and block.context_pre_only is False:
            interval_control = len(self.transformer_blocks) // len(block_controlnet_hidden_states)
            hidden_states = (
                hidden_states + block_controlnet_hidden_states[index_block // interval_control]
            )

    hidden_states = self.norm_out(hidden_states, temb)
    hidden_states = self.proj_out(hidden_states)

    # unpatchify
    patch_size = self.config.patch_size
    height = height // patch_size
    width = width // patch_size

    hidden_states = hidden_states.reshape(
        shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
    )
    hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
    output = hidden_states.reshape(
        shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
    )

    if USE_PEFT_BACKEND:
        # remove `lora_scale` from each PEFT layer
        unscale_lora_layers(self, lora_scale)

    if not return_dict:
        return (output,)

    return Transformer2DModelOutput(sample=output)