File size: 30,826 Bytes
de83feb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "ecbb6eac",
"metadata": {},
"outputs": [],
"source": [
"from transformers import pipeline\n",
"from transformers import TrainingArguments, Trainer, AutoModelForSeq2SeqLM"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a4bac354",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn.feature_extraction.text import CountVectorizer\n",
"import nltk\n",
"from nltk.stem.porter import PorterStemmer\n",
"from nltk.stem import WordNetLemmatizer\n",
"import re\n",
"from sklearn.metrics.pairwise import cosine_similarity\n",
"from fuzzywuzzy import fuzz\n",
"from sklearn.feature_extraction.text import TfidfVectorizer"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "bfe7183c",
"metadata": {},
"outputs": [],
"source": [
"\n",
"data3 = pd.read_csv('final2.csv')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "22f9643b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 3720 entries, 0 to 3719\n",
"Data columns (total 6 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Unnamed: 0 3720 non-null int64 \n",
" 1 topic 3720 non-null object\n",
" 2 discription 1748 non-null object\n",
" 3 keyword 3204 non-null object\n",
" 4 Links 3720 non-null object\n",
" 5 level 3720 non-null object\n",
"dtypes: int64(1), object(5)\n",
"memory usage: 174.5+ KB\n"
]
}
],
"source": [
"data3.info()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6ef84197",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Unnamed: 0</th>\n",
" <th>topic</th>\n",
" <th>discription</th>\n",
" <th>keyword</th>\n",
" <th>Links</th>\n",
" <th>level</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>Java</td>\n",
" <td>Java is a general-purpose computer programming...</td>\n",
" <td>Java, James Gosling, website, wikipedia, docum...</td>\n",
" <td>website: https://oracle.com/java/, documentati...</td>\n",
" <td>beginner to advance</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>JavaScript</td>\n",
" <td>JavaScript (), often abbreviated as JS, is a h...</td>\n",
" <td>JavaScript, Brendan Eich, reference, wikipedia...</td>\n",
" <td>reference: https://www.w3schools.com/js/js_res...</td>\n",
" <td>beginner to advance</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>C</td>\n",
" <td>C (, as in the letter c) is a general-purpose,...</td>\n",
" <td>C, Dennis Ritchie, reference, wikipedia, docum...</td>\n",
" <td>reference: http://www.c4learn.com/c-programmin...</td>\n",
" <td>beginner to advance</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>Python</td>\n",
" <td>Python is a widely used high-level programming...</td>\n",
" <td>Python, Guido van Rossum, website, reference, ...</td>\n",
" <td>website: https://www.python.org/, reference: h...</td>\n",
" <td>beginner to advance</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>SQL</td>\n",
" <td>SQL ( ( listen) ESS-kew-EL or ( listen) SEE-k...</td>\n",
" <td>SQL, Donald D. Chamberlin and Raymond F. Boyce...</td>\n",
" <td>documentation: https://docs.data.world/documen...</td>\n",
" <td>beginner to advance</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Unnamed: 0 topic discription \\\n",
"0 0 Java Java is a general-purpose computer programming... \n",
"1 1 JavaScript JavaScript (), often abbreviated as JS, is a h... \n",
"2 2 C C (, as in the letter c) is a general-purpose,... \n",
"3 3 Python Python is a widely used high-level programming... \n",
"4 4 SQL SQL ( ( listen) ESS-kew-EL or ( listen) SEE-k... \n",
"\n",
" keyword \\\n",
"0 Java, James Gosling, website, wikipedia, docum... \n",
"1 JavaScript, Brendan Eich, reference, wikipedia... \n",
"2 C, Dennis Ritchie, reference, wikipedia, docum... \n",
"3 Python, Guido van Rossum, website, reference, ... \n",
"4 SQL, Donald D. Chamberlin and Raymond F. Boyce... \n",
"\n",
" Links level \n",
"0 website: https://oracle.com/java/, documentati... beginner to advance \n",
"1 reference: https://www.w3schools.com/js/js_res... beginner to advance \n",
"2 reference: http://www.c4learn.com/c-programmin... beginner to advance \n",
"3 website: https://www.python.org/, reference: h... beginner to advance \n",
"4 documentation: https://docs.data.world/documen... beginner to advance "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data3.head()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "acf74e04",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 3720 entries, 0 to 3719\n",
"Data columns (total 6 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Unnamed: 0 3720 non-null int64 \n",
" 1 topic 3720 non-null string\n",
" 2 discription 1748 non-null string\n",
" 3 keyword 3720 non-null string\n",
" 4 Links 3720 non-null object\n",
" 5 level 3720 non-null string\n",
"dtypes: int64(1), object(1), string(4)\n",
"memory usage: 174.5+ KB\n"
]
}
],
"source": [
"data3['topic'] = data3.topic.astype(\"string\")\n",
"data3['discription'] = data3.discription.astype(\"string\")\n",
"data3['keyword'] = data3.keyword.astype(\"string\")\n",
"data3['level'] = data3.level.astype(\"string\")\n",
"data3.info()"
]
},
{
"cell_type": "markdown",
"id": "64f90df1",
"metadata": {},
"source": [
"# Data Cleaning Process\n",
"'\n",
"'\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "b16989a3",
"metadata": {},
"outputs": [],
"source": [
"data3['tag'] = data3['discription'] + \" \" + data3['keyword'] +\" \" + data3['level']"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "caa02729",
"metadata": {},
"outputs": [],
"source": [
"def remove_symbols(text):\n",
" # Create a regular expression pattern to match unwanted symbols\n",
" pattern = r'[^\\w\\s]' # Matches characters that are not alphanumeric or whitespace\n",
" # Substitute matched symbols with an empty string\n",
" return re.sub(pattern, '', text.lower()) "
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "a97fa574",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Unnamed: 0</th>\n",
" <th>topic</th>\n",
" <th>discription</th>\n",
" <th>keyword</th>\n",
" <th>Links</th>\n",
" <th>level</th>\n",
" <th>tag</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>Java</td>\n",
" <td>Java is a general-purpose computer programming...</td>\n",
" <td>Java, James Gosling, website, wikipedia, docum...</td>\n",
" <td>website: https://oracle.com/java/, documentati...</td>\n",
" <td>beginnertoadvance</td>\n",
" <td>java is a generalpurpose computer programming ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>JavaScript</td>\n",
" <td>JavaScript (), often abbreviated as JS, is a h...</td>\n",
" <td>JavaScript, Brendan Eich, reference, wikipedia...</td>\n",
" <td>reference: https://www.w3schools.com/js/js_res...</td>\n",
" <td>beginnertoadvance</td>\n",
" <td>javascript often abbreviated as js is a highl...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>C</td>\n",
" <td>C (, as in the letter c) is a general-purpose,...</td>\n",
" <td>C, Dennis Ritchie, reference, wikipedia, docum...</td>\n",
" <td>reference: http://www.c4learn.com/c-programmin...</td>\n",
" <td>beginnertoadvance</td>\n",
" <td>c as in the letter c is a generalpurpose impe...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>Python</td>\n",
" <td>Python is a widely used high-level programming...</td>\n",
" <td>Python, Guido van Rossum, website, reference, ...</td>\n",
" <td>website: https://www.python.org/, reference: h...</td>\n",
" <td>beginnertoadvance</td>\n",
" <td>python is a widely used highlevel programming ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>SQL</td>\n",
" <td>SQL ( ( listen) ESS-kew-EL or ( listen) SEE-k...</td>\n",
" <td>SQL, Donald D. Chamberlin and Raymond F. Boyce...</td>\n",
" <td>documentation: https://docs.data.world/documen...</td>\n",
" <td>beginnertoadvance</td>\n",
" <td>sql listen esskewel or listen seekwəl or ...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Unnamed: 0 topic discription \\\n",
"0 0 Java Java is a general-purpose computer programming... \n",
"1 1 JavaScript JavaScript (), often abbreviated as JS, is a h... \n",
"2 2 C C (, as in the letter c) is a general-purpose,... \n",
"3 3 Python Python is a widely used high-level programming... \n",
"4 4 SQL SQL ( ( listen) ESS-kew-EL or ( listen) SEE-k... \n",
"\n",
" keyword \\\n",
"0 Java, James Gosling, website, wikipedia, docum... \n",
"1 JavaScript, Brendan Eich, reference, wikipedia... \n",
"2 C, Dennis Ritchie, reference, wikipedia, docum... \n",
"3 Python, Guido van Rossum, website, reference, ... \n",
"4 SQL, Donald D. Chamberlin and Raymond F. Boyce... \n",
"\n",
" Links level \\\n",
"0 website: https://oracle.com/java/, documentati... beginnertoadvance \n",
"1 reference: https://www.w3schools.com/js/js_res... beginnertoadvance \n",
"2 reference: http://www.c4learn.com/c-programmin... beginnertoadvance \n",
"3 website: https://www.python.org/, reference: h... beginnertoadvance \n",
"4 documentation: https://docs.data.world/documen... beginnertoadvance \n",
"\n",
" tag \n",
"0 java is a generalpurpose computer programming ... \n",
"1 javascript often abbreviated as js is a highl... \n",
"2 c as in the letter c is a generalpurpose impe... \n",
"3 python is a widely used highlevel programming ... \n",
"4 sql listen esskewel or listen seekwəl or ... "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data3['tag'] = data3['tag'].fillna('')\n",
"data3['tag'] = data3['tag'].apply(remove_symbols)\n",
"data3['level'] = data3['level'].apply(lambda x: x.replace(\" \",\"\"))\n",
"data3['keyword'] = data3['keyword'].fillna('')\n",
"data3.head()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "a5a4f1ba",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'java is a generalpurpose computer programming language that is concurrent classbased objectoriented and specifically designed to have as few implementation dependencies as possible it is intended to let application developers write once run anywhere wora meaning that compiled java code can run on all platforms that support java without the need for recompilation java applications are typically compiled to bytecode that can run on any java virtual machine jvm regardless of computer architecture as of 2016 java is one of the most popular programming languages in use particularly for clientserver web applications with a reported 9 million developers java was originally developed by james gosling at sun microsystems which has since been acquired by oracle corporation and released in 1995 as a core component of sun microsystems java platform the language derives much of its syntax from c and c but it has fewer lowlevel facilities than either of them the original and reference implementation java compilers virtual machines and class libraries were originally released by sun under proprietary licenses as of may 2007 in compliance with the specifications of the java community process sun relicensed most of its java technologies under the gnu general public license others have also developed alternative implementations of these sun technologies such as the gnu compiler for java bytecode compiler gnu classpath standard libraries and icedteaweb browser plugin for applets the latest version is java 9 released on september 21 2017 and is one of the two versions currently supported for free by oracle versions earlier than java 8 are supported by companies on a commercial basis eg by oracle back to java 6 as of october 2017 while they still highly recommend that you uninstall prejava 8 from at least windows computers java james gosling website wikipedia document united states beginnertoadvance'"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data3['tag'][0]"
]
},
{
"cell_type": "markdown",
"id": "efb5aaba",
"metadata": {},
"source": [
"# Convert tag columns into vector "
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "86f2a927",
"metadata": {},
"outputs": [],
"source": [
"cv = CountVectorizer( max_features = 5000, stop_words = 'english')\n",
"vector = cv.fit_transform(data3['tag']).toarray()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "b99539f9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 0, 0, ..., 0, 0, 0], dtype=int64)"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vector[0]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "6be0d7ec",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['10', '100', '1000', ..., 'λprolog', 'λx', 'μc'], dtype=object)"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cv.get_feature_names_out()"
]
},
{
"cell_type": "markdown",
"id": "019ce68a",
"metadata": {},
"source": [
"# Stemming And Lemmitization Process"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "be45a6b8",
"metadata": {},
"outputs": [],
"source": [
"ps = PorterStemmer()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "3635f58c",
"metadata": {},
"outputs": [],
"source": [
"def preprocess_query(query):\n",
" \n",
" # Lowercase the query\n",
" cleaned_query = query.lower()\n",
"\n",
" # Remove punctuation (adjust as needed)\n",
" import string\n",
" punctuation = string.punctuation\n",
" cleaned_query = ''.join([char for char in cleaned_query if char not in punctuation])\n",
"\n",
" # Remove stop words (optional, replace with your stop word list)\n",
" stop_words = [\"the\", \"a\", \"is\", \"in\", \"of\"]\n",
" cleaned_query = ' '.join([word for word in cleaned_query.split() if word not in stop_words])\n",
"\n",
" # Stemming\n",
" ps = PorterStemmer()\n",
" cleaned_query = ' '.join([ps.stem(word) for word in cleaned_query.split()])\n",
"\n",
" # Lemmatization\n",
" wnl = WordNetLemmatizer()\n",
" cleaned_query = ' '.join([wnl.lemmatize(word) for word in cleaned_query.split()])\n",
"\n",
" return cleaned_query"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "2787d4d3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'talk'"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"preprocess_query('talked')"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "6b8326d6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'java jame gosl websit wikipedia document unit state beginnertoadv'"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"preprocess_query('java james gosling website wikipedia document united states beginnertoadvance')"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "02ff3f52",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 java is a generalpurpos comput program languag...\n",
"1 javascript often abbrevi as js is a highlevel ...\n",
"2 c as in the letter c is a generalpurpos imper ...\n",
"3 python is a wide use highlevel program languag...\n",
"4 sql listen esskewel or listen seekwəl or skwee...\n",
" ... \n",
"3715 understandingtheprofessionaldataengineercertif...\n",
"3716 atourofgooglecloudhandsonlab machinelearningen...\n",
"3717 introductiontoaiandmachinelearningongoogleclou...\n",
"3718 introductiontoaiandmachinelearningongoogleclou...\n",
"3719 aifound machinelearningengineerlearningpathweb...\n",
"Name: tag, Length: 3720, dtype: object"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data3['tag'].apply(stem) # apply on tag columns "
]
},
{
"cell_type": "markdown",
"id": "66adf3fd",
"metadata": {},
"source": [
"# Find Similarity score for finding most related topic from dataset"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "33126518",
"metadata": {},
"outputs": [],
"source": [
"similar = cosine_similarity(vector)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "e1f7379a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[(1, 0.9999999999999998),\n",
" (40, 0.4543441112511213),\n",
" (350, 0.445852828483904),\n",
" (134, 0.4049985302736412),\n",
" (1485, 0.3754717312648463)]"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sorted(list(enumerate(similar[1])),reverse = True, key = lambda x: x[1])[0:5]"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "084d898b",
"metadata": {},
"outputs": [],
"source": [
"summarizer = pipeline(\"summarization\", model=\"facebook/bart-base\")\n",
"text_generator = pipeline(\"text-generation\", model=\"gpt2\")"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "0197db1f",
"metadata": {},
"outputs": [],
"source": [
"documents = []\n",
"for index, row in data3.iterrows():\n",
" topic_description = preprocess_query(row[\"topic\"]) \n",
" keywords = preprocess_query(row[\"keyword\"]) \n",
" combined_text = f\"{topic_description} {keywords}\" # Combine for TF-IDF\n",
" documents.append(combined_text)\n"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "d80d5e6f",
"metadata": {},
"outputs": [],
"source": [
"# Create TF-IDF vectorizer\n",
"vectorizer = TfidfVectorizer()\n",
"\n",
"# Fit the vectorizer on the documents\n",
"document_vectors = vectorizer.fit_transform(documents)\n",
"\n",
"def recommend_from_dataset(query):\n",
" \n",
" cleaned_query = preprocess_query(query)\n",
" query_vector = vectorizer.transform([cleaned_query])\n",
"\n",
" # Calculate cosine similarity between query and documents\n",
" cosine_similarities = cosine_similarity(query_vector, document_vectors)\n",
" similarity_scores = cosine_similarities.flatten()\n",
"\n",
" # Sort documents based on similarity scores\n",
" sorted_results = sorted(zip(similarity_scores, data3.index, range(len(documents))), reverse=True)\n",
"\n",
" # Return top N recommendations with scores, topic names, and links (if available)\n",
" top_n_results = sorted_results[:5] \n",
" recommendations = []\n",
" for result in top_n_results:\n",
" score = result[0]\n",
" document_id = result[1]\n",
" topic_name = data3.loc[document_id, \"topic\"] \n",
" link = data3.loc[document_id, \"Links\"] if \"Links\" in data3.columns else \"No link available\" \n",
" if score >= 0.3:\n",
" recommendations.append({\"topic_name\": topic_name, \"link\": link, \"score\": score})\n",
" return recommendations\n"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "e56ccfc2",
"metadata": {},
"outputs": [],
"source": [
"def fine_tune_model(model_name, train_dataset, validation_dataset, epochs=3):\n",
" # Load model and tokenizer\n",
" model = AutoModelForSeq2SeqLM.from_pretrained(model_name)\n",
" tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
"\n",
" # Define training arguments (adjust parameters as needed)\n",
" training_args = TrainingArguments(\n",
" output_dir=\"./results\", # Adjust output directory\n",
" per_device_train_batch_size=8,\n",
" per_device_eval_batch_size=8,\n",
" num_train_epochs=epochs,\n",
" save_steps=10_000,\n",
" )\n",
"\n",
" # Create a Trainer instance for fine-tuning\n",
" trainer = Trainer(\n",
" model=model,\n",
" args=training_args,\n",
" train_dataset=train_dataset,\n",
" eval_dataset=validation_dataset,\n",
" tokenizer=tokenizer,\n",
" )\n",
"\n",
" # Train the model\n",
" trainer.train()\n",
"\n",
" return model"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "9c1c02c9",
"metadata": {},
"outputs": [],
"source": [
"train_dataset = # Prepare your training dataset\n",
"validation_dataset = ... # Prepare your validation dataset\n",
"\n",
"# Fine-tune the model (replace model name if needed)\n",
"fine_tuned_model = fine_tune_model(\"facebook/bart-base\", train_dataset, validation_dataset)\n",
"\n",
"# Update summarization pipeline with the fine-tuned model\n",
"summarizer1 = pipeline(\"text-generation\", model=fine_tuned_model, tokenizer=fine_tuned_model.tokenizer)\n"
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "49baeaf5",
"metadata": {},
"outputs": [],
"source": [
"def summarize_and_generate(user_query, recommendations):\n",
" \n",
" # Summarize the user query\n",
" query_summary = summarizer(user_query, max_length=100, truncation=True)[0][\"summary_text\"]\n",
"\n",
" # Generate creative text related to the query\n",
" generated_text = text_generator(f\"Exploring the concept of {user_query}\", max_length=100, num_return_sequences=1)[0][\"generated_text\"]\n",
"\n",
" # Extract related links with scores\n",
" related_links = []\n",
" for recommendation in recommendations:\n",
" related_links.append({\"topic\": recommendation[\"topic_name\"], \"link\": recommendation[\"link\"], \"score\": recommendation[\"score\"]})\n",
"\n",
" return {\n",
" \"query_summary\": query_summary.strip(),\n",
" \"generated_text\": generated_text.strip(),\n",
" \"related_links\": related_links\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "fb9e58cc",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Your max_length is set to 100, but you input_length is only 9. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=4)\n",
"Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Query Summary: java by james goslinjames groslin\n",
"Creative Text: Exploring the concept of java by james goslin is an impressive effort at the best of times and I'm very impressed by how well this was done. The code looks quite simple for simple purposes — there are only two basic methods, call() and destroy(). These two methods are used by most of the java libraries, so any Java that relies on call() or destroy() should use a proper method of your choice as well. Also, the code uses a single method, so that\n",
"Some Related Links for your query:\n",
"- Java:\n",
" website: https://oracle.com/java/, documentation: https://docs.oracle.com/en/java/, wikipedia: https://en.wikipedia.org/wiki/Java_(programming_language) : \n",
" Score: 0.625462748622542\n",
"- Java Properties:\n",
" wikipedia: https://en.wikipedia.org/wiki/.properties : \n",
" Score: 0.3952596829701199\n",
"- Java Bytecode:\n",
" documentation: https://docs.oracle.com/javase/specs/jvms/se7/html/, wikipedia: https://en.wikipedia.org/wiki/Java_bytecode : \n",
" Score: 0.38255306128391625\n",
"- Query by Example:\n",
" reference: https://semanticscholar.org/paper/f320e453ae65ddf0a3789f4383fa164481c7a8b3, wikipedia: https://en.wikipedia.org/wiki/Query_by_Example : \n",
" Score: 0.3726562653850712\n",
"- Join Java:\n",
" wikipedia: https://en.wikipedia.org/wiki/Join_Java : \n",
" Score: 0.3143513411797295\n"
]
}
],
"source": [
"user_query = \"java by james goslin\"\n",
"recommendations = recommend_from_dataset(user_query)\n",
"\n",
"# Get the summary, generated text, and related links\n",
"results = summarize_and_generate(user_query, recommendations)\n",
"\n",
"print(f\"Query Summary: {results['query_summary']}\")\n",
"print(f\"Creative Text: {results['generated_text']}\")\n",
"print(\"Some Related Links for your query:\")\n",
"for link in results[\"related_links\"]:\n",
" print(f\"- {link['topic']}:\\n {link['link']} : \\n Score: {link['score']}\") #(Score: {link['score']})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "46535752",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|