File size: 7,256 Bytes
ff0af81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320


# In[1]:


from transformers import pipeline
from transformers import TrainingArguments, Trainer, AutoModelForSeq2SeqLM


# In[2]:


import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
import nltk
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import re
from sklearn.metrics.pairwise import cosine_similarity
from fuzzywuzzy import fuzz
from sklearn.feature_extraction.text import TfidfVectorizer


# In[47]:


data3 = pd.read_csv('final2.csv')


# In[5]:


data3.info()


# In[6]:


data3.head()


# In[9]:


data3['topic'] = data3.topic.astype("string")
data3['discription'] = data3.discription.astype("string")
data3['keyword'] = data3.keyword.astype("string")
data3['level'] = data3.level.astype("string")
data3.info()


# # Data Cleaning Process
# '
# '
# 

# In[10]:


data3['tag'] = data3['discription'] + " " + data3['keyword'] +" " + data3['level']


# In[11]:


def remove_symbols(text):
  # Create a regular expression pattern to match unwanted symbols
    pattern = r'[^\w\s]'  # Matches characters that are not alphanumeric or whitespace
  # Substitute matched symbols with an empty string
    return re.sub(pattern, '', text.lower()) 


# In[12]:


data3['tag'] = data3['tag'].fillna('')
data3['tag'] = data3['tag'].apply(remove_symbols)
data3['level'] = data3['level'].apply(lambda x: x.replace(" ",""))
data3['keyword'] = data3['keyword'].fillna('')
data3.head()


# In[13]:


data3['tag'][0]


# # Convert tag columns into vector 

# In[14]:


cv = CountVectorizer( max_features = 5000, stop_words = 'english')
vector = cv.fit_transform(data3['tag']).toarray()


# In[15]:


vector[0]


# In[16]:


cv.get_feature_names_out()


# # Stemming And Lemmitization Process

# In[18]:


ps = PorterStemmer()


# In[30]:


def preprocess_query(query):
    
    # Lowercase the query
    cleaned_query = query.lower()

    # Remove punctuation (adjust as needed)
    import string
    punctuation = string.punctuation
    cleaned_query = ''.join([char for char in cleaned_query if char not in punctuation])

    # Remove stop words (optional, replace with your stop word list)
    stop_words = ["the", "a", "is", "in", "of"]
    cleaned_query = ' '.join([word for word in cleaned_query.split() if word not in stop_words])

    # Stemming
    ps = PorterStemmer()
    cleaned_query = ' '.join([ps.stem(word) for word in cleaned_query.split()])

    # Lemmatization
    wnl = WordNetLemmatizer()
    cleaned_query = ' '.join([wnl.lemmatize(word) for word in cleaned_query.split()])

    return cleaned_query


# In[32]:


preprocess_query('talked')


# In[31]:


preprocess_query('java james gosling website wikipedia document united states beginnertoadvance')


# In[23]:


data3['tag'].apply(stem)   # apply on tag columns 


# # Find Similarity score for finding most related topic from dataset

# In[24]:


similar = cosine_similarity(vector)


# In[27]:


sorted(list(enumerate(similar[1])),reverse = True, key = lambda x: x[1])[0:5]


# In[29]:


summarizer = pipeline("summarization", model="facebook/bart-base")
text_generator = pipeline("text-generation", model="gpt2")


# In[34]:


documents = []
for index, row in data3.iterrows():
    topic_description = preprocess_query(row["topic"]) 
    keywords = preprocess_query(row["keyword"])  
    combined_text = f"{topic_description} {keywords}"  # Combine for TF-IDF
    documents.append(combined_text)


# In[35]:


# Create TF-IDF vectorizer
vectorizer = TfidfVectorizer()

# Fit the vectorizer on the documents
document_vectors = vectorizer.fit_transform(documents)

def recommend_from_dataset(query):
    
    cleaned_query = preprocess_query(query)
    query_vector = vectorizer.transform([cleaned_query])

    # Calculate cosine similarity between query and documents
    cosine_similarities = cosine_similarity(query_vector, document_vectors)
    similarity_scores = cosine_similarities.flatten()

    # Sort documents based on similarity scores
    sorted_results = sorted(zip(similarity_scores, data3.index, range(len(documents))), reverse=True)

    # Return top N recommendations with scores, topic names, and links (if available)
    top_n_results = sorted_results[:5]  
    recommendations = []
    for result in top_n_results:
        score = result[0]
        document_id = result[1]
        topic_name = data3.loc[document_id, "topic"]  
        link = data3.loc[document_id, "Links"] if "Links" in data3.columns else "No link available" 
        if score >= 0.3:
            recommendations.append({"topic_name": topic_name, "link": link, "score": score})
    return recommendations


# In[36]:


def fine_tune_model(model_name, train_dataset, validation_dataset, epochs=3):
    # Load model and tokenizer
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
    tokenizer = AutoTokenizer.from_pretrained(model_name)

    # Define training arguments (adjust parameters as needed)
    training_args = TrainingArguments(
        output_dir="./results",  # Adjust output directory
        per_device_train_batch_size=8,
        per_device_eval_batch_size=8,
        num_train_epochs=epochs,
        save_steps=10_000,
    )

    # Create a Trainer instance for fine-tuning
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=validation_dataset,
        tokenizer=tokenizer,
    )

    # Train the model
    trainer.train()

    return model


# In[39]:


# train_dataset = ...  # Prepare your training dataset
# validation_dataset = ...  # Prepare your validation dataset

# Fine-tune the model (replace model name if needed)
# fine_tuned_model = fine_tune_model("facebook/bart-base", train_dataset, validation_dataset)

# Update summarization pipeline with the fine-tuned model
# summarizer1 = pipeline("text-generation", model=fine_tuned_model, tokenizer=fine_tuned_model.tokenizer)


# In[45]:


def summarize_and_generate(user_query, recommendations):
    
    # Summarize the user query
    query_summary = summarizer(user_query, max_length=100, truncation=True)[0]["summary_text"]

    # Generate creative text related to the query
    generated_text = text_generator(f"Exploring the concept of {user_query}", max_length=100, num_return_sequences=1)[0]["generated_text"]

    # Extract related links with scores
    related_links = []
    for recommendation in recommendations:
        related_links.append({"topic": recommendation["topic_name"], "link": recommendation["link"], "score": recommendation["score"]})

    return {
        "query_summary": query_summary.strip(),
        "generated_text": generated_text.strip(),
        "related_links": related_links
      }


# In[46]:


user_query = "java by james goslin"
recommendations = recommend_from_dataset(user_query)

# Get the summary, generated text, and related links
results = summarize_and_generate(user_query, recommendations)

print(f"Query Summary: {results['query_summary']}")
print(f"Creative Text: {results['generated_text']}")
print("Some Related Links for your query:")
for link in results["related_links"]:
    print(f"- {link['topic']}:\n {link['link']} : \n Score: {link['score']}") #(Score: {link['score']})


# In[ ]: