Update ST Model Zoo
Browse files
README.md
CHANGED
@@ -1,10 +1,3 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: sla0044
|
4 |
-
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/LICENSE.md
|
6 |
-
pipeline_tag: image-classification
|
7 |
-
---
|
8 |
# EfficientNet
|
9 |
|
10 |
## **Use case** : `Image classification`
|
@@ -64,48 +57,49 @@ For an image resolution of NxM and P classes :
|
|
64 |
# Performances
|
65 |
|
66 |
## Metrics
|
|
|
67 |
* Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
68 |
|
69 |
* `tfs` stands for "training from scratch", meaning that the model weights were randomly initialized before training.
|
70 |
|
71 |
### Reference **NPU** memory footprint on food-101 dataset (see Accuracy for details on dataset)
|
72 |
-
|Model | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB)| STM32Cube.AI version | STEdgeAI Core version |
|
73 |
-
|
74 |
-
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_128_tfs/st_efficientnet_lc_v1_128_tfs_int8.tflite) | Int8 | 128x128x3 | STM32N6 | 256 | 0 |
|
75 |
-
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_224_tfs/st_efficientnet_lc_v1_224_tfs_int8.tflite) | Int8 | 224x224x3 | STM32N6 | 784.02 | 0 |
|
76 |
|
77 |
### Reference **NPU** inference time on food-101 dataset (see Accuracy for details on dataset)
|
78 |
-
| Model | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec
|
79 |
-
|
80 |
-
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_128_tfs/st_efficientnet_lc_v1_128_tfs_int8.tflite)| Int8 | 128x128x3 | STM32N6570-DK | NPU/MCU |
|
81 |
-
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_224_tfs/st_efficientnet_lc_v1_224_tfs_int8.tflite) | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU |
|
82 |
|
83 |
|
84 |
### Reference **MCU** memory footprints based on Flowers dataset (see Accuracy for details on dataset)
|
85 |
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
86 |
|---------------------------|--------|--------------|---------|----------------|-------------|---------------|------------|------------|-------------|----------------------|
|
87 |
-
| ST EfficientNet LC v1 tfs | Int8 | 224x224x3 | STM32H7 | 430.78 KiB | 58.19 KiB | 505.41 KiB | 158.4 KiB
|
88 |
-
| ST EfficientNet LC v1 tfs | Int8 | 128x128x3 | STM32H7 | 166.78 KiB | 57.86 KiB | 505.41 KiB |
|
89 |
|
90 |
|
91 |
### Reference **MCU** inference time based on Flowers dataset (see Accuracy for details on dataset)
|
92 |
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
93 |
|---------------------------|--------|------------|-------------------|------------------|-----------|---------------------|----------------------|
|
94 |
-
| ST EfficientNet LC v1 tfs | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 438.33 ms
|
95 |
-
| ST EfficientNet LC v1 tfs | Int8 | 128x128x3 | STM32H747I-DISCO | 1 CPU | 400 MHz |
|
96 |
-
| ST EfficientNet LC v1 tfs | Int8 | 224x224x3 | STM32F769I-DISCO | 1 CPU | 216 MHz | 871.7 ms | 10.
|
97 |
-
| ST EfficientNet LC v1 tfs | Int8 | 128x128x3 | STM32F769I-DISCO | 1 CPU | 216 MHz | 259.5 ms | 10.
|
98 |
|
99 |
|
100 |
### Reference **MPU** inference time based on Flowers dataset (see Accuracy for details on dataset)
|
101 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
102 |
|---------------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
103 |
-
| ST EfficientNet LC v1 tfs | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 36.
|
104 |
-
| ST EfficientNet LC v1 tfs | Int8 | 128x128x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 14.
|
105 |
-
| ST EfficientNet LC v1 tfs | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz |
|
106 |
-
| ST EfficientNet LC v1 tfs | Int8 | 128x128x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz |
|
107 |
-
| ST EfficientNet LC v1 tfs | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz |
|
108 |
-
| ST EfficientNet LC v1 tfs | Int8 | 128x128x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz |
|
109 |
|
110 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
111 |
|
@@ -139,9 +133,9 @@ Number of classes: 101, number of files: 101000
|
|
139 |
|
140 |
| Model | Format | Resolution | Top 1 Accuracy (%) |
|
141 |
|---------------------------|--------|------------|--------------------|
|
142 |
-
| ST EfficientNet LC v1 tfs | Float | 224x224x3 | 74.
|
143 |
| ST EfficientNet LC v1 tfs | Int8 | 224x224x3 | 74.44 |
|
144 |
-
| ST EfficientNet LC v1 tfs | Float | 128x128x3 | 63.
|
145 |
| ST EfficientNet LC v1 tfs | Int8 | 128x128x3 | 63.07 |
|
146 |
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# EfficientNet
|
2 |
|
3 |
## **Use case** : `Image classification`
|
|
|
57 |
# Performances
|
58 |
|
59 |
## Metrics
|
60 |
+
|
61 |
* Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
62 |
|
63 |
* `tfs` stands for "training from scratch", meaning that the model weights were randomly initialized before training.
|
64 |
|
65 |
### Reference **NPU** memory footprint on food-101 dataset (see Accuracy for details on dataset)
|
66 |
+
|Model | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|
67 |
+
|----------|--------|-------------|------------------|------------------|---------------------|---------------------|----------------------|-------------------------|
|
68 |
+
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_128_tfs/st_efficientnet_lc_v1_128_tfs_int8.tflite) | Int8 | 128x128x3 | STM32N6 | 256 | 0 | 579.69 | 10.2.0 | 2.2.0 |
|
69 |
+
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_224_tfs/st_efficientnet_lc_v1_224_tfs_int8.tflite) | Int8 | 224x224x3 | STM32N6 | 784.02 | 0 | 586.44 | 10.2.0 | 2.2.0 |
|
70 |
|
71 |
### Reference **NPU** inference time on food-101 dataset (see Accuracy for details on dataset)
|
72 |
+
| Model | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
73 |
+
|--------|--------|-------------|------------------|------------------|---------------------|-----------|----------------------|-------------------------|
|
74 |
+
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_128_tfs/st_efficientnet_lc_v1_128_tfs_int8.tflite)| Int8 | 128x128x3 | STM32N6570-DK | NPU/MCU | 6.88 | 145.34 | 10.2.0 | 2.2.0 |
|
75 |
+
| [ST EfficientNet LC v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnet/ST_pretrainedmodel_public_dataset/food-101/st_efficientnet_lc_v1_224_tfs/st_efficientnet_lc_v1_224_tfs_int8.tflite) | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 15.76 | 63.45 | 10.2.0 | 2.2.0 |
|
76 |
|
77 |
|
78 |
### Reference **MCU** memory footprints based on Flowers dataset (see Accuracy for details on dataset)
|
79 |
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
80 |
|---------------------------|--------|--------------|---------|----------------|-------------|---------------|------------|------------|-------------|----------------------|
|
81 |
+
| ST EfficientNet LC v1 tfs | Int8 | 224x224x3 | STM32H7 | 430.78 KiB | 58.19 KiB | 505.41 KiB | 158.4 KiB | 488.97 KiB | 663.81 KiB | 10.2.0 |
|
82 |
+
| ST EfficientNet LC v1 tfs | Int8 | 128x128x3 | STM32H7 | 166.78 KiB | 57.86 KiB | 505.41 KiB | 156.74 KiB | 224.64 KiB | 662.15 KiB | 10.2.0 |
|
83 |
|
84 |
|
85 |
### Reference **MCU** inference time based on Flowers dataset (see Accuracy for details on dataset)
|
86 |
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
87 |
|---------------------------|--------|------------|-------------------|------------------|-----------|---------------------|----------------------|
|
88 |
+
| ST EfficientNet LC v1 tfs | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 438.33 ms | 10.2.0 |
|
89 |
+
| ST EfficientNet LC v1 tfs | Int8 | 128x128x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 147.43 ms | 10.2.0 |
|
90 |
+
| ST EfficientNet LC v1 tfs | Int8 | 224x224x3 | STM32F769I-DISCO | 1 CPU | 216 MHz | 871.7 ms | 10.2.0 |
|
91 |
+
| ST EfficientNet LC v1 tfs | Int8 | 128x128x3 | STM32F769I-DISCO | 1 CPU | 216 MHz | 259.5 ms | 10.2.0 |
|
92 |
|
93 |
|
94 |
### Reference **MPU** inference time based on Flowers dataset (see Accuracy for details on dataset)
|
95 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
96 |
|---------------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
97 |
+
| ST EfficientNet LC v1 tfs | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 36.82 ms | 14.72 | 85.28 | 0 | v6.1.0 | OpenVX |
|
98 |
+
| ST EfficientNet LC v1 tfs | Int8 | 128x128x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 14.81 ms | 29.68 | 70.32 | 0 | v6.1.0 | OpenVX |
|
99 |
+
| ST EfficientNet LC v1 tfs | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 137.34 ms | NA | NA | 100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
100 |
+
| ST EfficientNet LC v1 tfs | Int8 | 128x128x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 45.80 ms | NA | NA | 100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
101 |
+
| ST EfficientNet LC v1 tfs | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 195.25 ms | NA | NA | 100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
102 |
+
| ST EfficientNet LC v1 tfs | Int8 | 128x128x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 65.14 ms | NA | NA | 100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
103 |
|
104 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
105 |
|
|
|
133 |
|
134 |
| Model | Format | Resolution | Top 1 Accuracy (%) |
|
135 |
|---------------------------|--------|------------|--------------------|
|
136 |
+
| ST EfficientNet LC v1 tfs | Float | 224x224x3 | 74.83 |
|
137 |
| ST EfficientNet LC v1 tfs | Int8 | 224x224x3 | 74.44 |
|
138 |
+
| ST EfficientNet LC v1 tfs | Float | 128x128x3 | 63.56 |
|
139 |
| ST EfficientNet LC v1 tfs | Int8 | 128x128x3 | 63.07 |
|
140 |
|
141 |
|