Update ST Model Zoo
Browse files
README.md
CHANGED
@@ -1,9 +1,3 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: sla0044
|
4 |
-
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/LICENSE.md
|
6 |
-
---
|
7 |
# EfficientNet v2
|
8 |
|
9 |
## **Use case** : `Image classification`
|
@@ -11,7 +5,7 @@ license_link: >-
|
|
11 |
# Model description
|
12 |
|
13 |
|
14 |
-
EfficientNet v2 family is one of the best
|
15 |
and number of parameters reduction.
|
16 |
|
17 |
This family of networks comprises various subtypes: B0 (224x224), B1 (240x240), B2 (260x260), B3 (300x300), S (384x384) ranked by depth and width increasing order.
|
@@ -69,40 +63,37 @@ For an image resolution of NxM and P classes
|
|
69 |
## Metrics
|
70 |
|
71 |
* Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
72 |
-
|
73 |
* `fft` stands for "full fine-tuning", meaning that the full model weights were initialized from a transfer learning pre-trained model, and all the layers were unfrozen during the training.
|
74 |
|
75 |
-
|
76 |
-
|
77 |
### Reference **NPU** memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
78 |
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|
79 |
-
|
80 |
-
| [efficientnet_v2B0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B0_224_fft/efficientnet_v2B0_224_fft_qdq_int8.onnx) | food-101 | Int8 | 224x224x3 | STM32N6 | 1834.44 |0.0|
|
81 |
-
| [efficientnet_v2B1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft_qdq_int8.onnx) | food-101 | Int8 | 240x240x3 | STM32N6 | 2589.97 |0.0|
|
82 |
-
| [efficientnet_v2B2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft_qdq_int8.onnx) | food-101 | Int8 | 260x260x3 | STM32N6 | 2629.56 |528.12|
|
83 |
-
| [efficientnet_v2S_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft_qdq_int8.onnx) | food-
|
84 |
-
| [efficientnet_v2B0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B0_224/efficientnet_v2B0_224_qdq_int8.onnx) | ImageNet | Int8 | 224x224x3 | STM32N6 | 1834.44 | 0.0 |
|
85 |
-
| [efficientnet_v2B1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B1_240/efficientnet_v2B1_240_qdq_int8.onnx) | ImageNet | Int8 | 240x240x3 | STM32N6 | 2589.97 | 0.0 |
|
86 |
-
| [efficientnet_v2B2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260_qdq_int8.onnx) | ImageNet | Int8 | 260x260x3 | STM32N6 | 2629.56 | 528.12 |
|
87 |
-
| [efficientnet_v2S_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384_qdq_int8.onnx) | ImageNet | Int8 | 384x384x3 | STM32N6 | 2700 | 6912 |
|
88 |
|
89 |
|
90 |
### Reference **NPU** inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
91 |
-
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec
|
92 |
-
|
93 |
-
| [efficientnet_v2B0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B0_224_fft/efficientnet_v2B0_224_fft_qdq_int8.onnx) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU |
|
94 |
-
| [efficientnet_v2B1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft_qdq_int8.onnx) | food-101 | Int8 | 240x240x3 | STM32N6570-DK | NPU/MCU |
|
95 |
-
| [efficientnet_v2B2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft_qdq_int8.onnx) | food-101 | Int8 | 260x260x3 | STM32N6570-DK | NPU/MCU |
|
96 |
-
| [efficientnet_v2S_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft_qdq_int8.onnx) | food-101 | Int8 | 384x384x3 | STM32N6570-DK | NPU/MCU |
|
97 |
-
| [efficientnet_v2B0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B0_224/efficientnet_v2B0_224_qdq_int8.onnx) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU |
|
98 |
-
| [efficientnet_v2B1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B1_240/efficientnet_v2B1_240_qdq_int8.onnx) | ImageNet | Int8 | 240x240x3 | STM32N6570-DK | NPU/MCU |
|
99 |
-
| [efficientnet_v2B2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260_qdq_int8.onnx) | ImageNet | Int8 | 260x260x3 | STM32N6570-DK | NPU/MCU |
|
100 |
-
| [efficientnet_v2S_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384_qdq_int8.onnx) | ImageNet | Int8 | 384x384x3 | STM32N6570-DK | NPU/MCU |
|
101 |
|
102 |
* The deployment of all the models listed in the table is supported, except for the efficientnet_v2S_384 model, for which support is coming soon.
|
103 |
### Accuracy with Food-101 dataset
|
104 |
|
105 |
-
Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/)
|
106 |
|
107 |
| Model | Format | Resolution | Top 1 Accuracy |
|
108 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|----------------|
|
@@ -110,7 +101,7 @@ Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-1
|
|
110 |
| [efficientnet_v2B0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B0_224_fft/efficientnet_v2B0_224_fft_qdq_int8.onnx) | Int8 | 224x224x3 | 81.1 % |
|
111 |
| [efficientnet_v2B1_240_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft.h5) | Float | 240x240x3 | 83.23 % |
|
112 |
| [efficientnet_v2B1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft_qdq_int8.onnx) | Int8 | 240x240x3 | 82.95 % |
|
113 |
-
| [efficientnet_v2B2_260_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft.h5) | Float | 260x260x3 | 84.
|
114 |
| [efficientnet_v2B2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft_qdq_int8.onnx) | Int8 | 260x260x3 | 84.04 % |
|
115 |
| [efficientnet_v2S_384_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft.h5) | Float | 384x384x3 | 88.16 % |
|
116 |
| [efficientnet_v2S_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft_qdq_int8.onnx) | Int8 | 384x384x3 | 87.34 % |
|
@@ -118,7 +109,7 @@ Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-1
|
|
118 |
|
119 |
### Accuracy with ImageNet
|
120 |
|
121 |
-
Dataset details: [link](https://www.image-net.org), Quotation[[4]](#4)
|
122 |
Number of classes: 1000.
|
123 |
To perform the quantization, we calibrated the activations with a random subset of the training set.
|
124 |
For the sake of simplicity, the accuracy reported here was estimated on the 10000 labelled images of the validation set.
|
@@ -131,7 +122,7 @@ For the sake of simplicity, the accuracy reported here was estimated on the 1000
|
|
131 |
| [efficientnet_v2B1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B1_240/efficientnet_v2B1_240_qdq_int8.onnx) | Int8 | 240x240x3 | 75.5 % |
|
132 |
| [efficientnet_v2B2_260](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260.h5) | Float | 260x260x3 | 76.58 % |
|
133 |
| [efficientnet_v2B2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260_qdq_int8.onnx) | Int8 | 260x260x3 | 76.26 % |
|
134 |
-
| [efficientnet_v2S_384](
|
135 |
| [efficientnet_v2S_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384_qdq_int8.onnx) | Int8 | 384x384x3 | 83.07 % |
|
136 |
|
137 |
|
@@ -153,5 +144,4 @@ L. Bossard, M. Guillaumin, and L. Van Gool, "Food-101 -- Mining Discriminative C
|
|
153 |
|
154 |
<a id="4">[4]</a>
|
155 |
Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei.
|
156 |
-
(* = equal contribution) ImageNet Large Scale Visual Recognition Challenge.
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# EfficientNet v2
|
2 |
|
3 |
## **Use case** : `Image classification`
|
|
|
5 |
# Model description
|
6 |
|
7 |
|
8 |
+
EfficientNet v2 family is one of the best topologies for image classification. It has been obtained through neural architecture search with a special care given to training time
|
9 |
and number of parameters reduction.
|
10 |
|
11 |
This family of networks comprises various subtypes: B0 (224x224), B1 (240x240), B2 (260x260), B3 (300x300), S (384x384) ranked by depth and width increasing order.
|
|
|
63 |
## Metrics
|
64 |
|
65 |
* Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
|
|
66 |
* `fft` stands for "full fine-tuning", meaning that the full model weights were initialized from a transfer learning pre-trained model, and all the layers were unfrozen during the training.
|
67 |
|
|
|
|
|
68 |
### Reference **NPU** memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
69 |
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|
70 |
+
|----------|------------------|--------|-------------|------------------|------------------|---------------------|---------------------|----------------------|-------------------------|
|
71 |
+
| [efficientnet_v2B0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B0_224_fft/efficientnet_v2B0_224_fft_qdq_int8.onnx) | food-101 | Int8 | 224x224x3 | STM32N6 | 1834.44 |0.0| 7552.02 | 10.2.0 | 2.2.0 |
|
72 |
+
| [efficientnet_v2B1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft_qdq_int8.onnx) | food-101 | Int8 | 240x240x3 | STM32N6 | 2589.97 |0.0| 8332.27 | 10.2.0 | 2.2.0 |
|
73 |
+
| [efficientnet_v2B2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft_qdq_int8.onnx) | food-101 | Int8 | 260x260x3 | STM32N6 | 2629.56 |528.12| 10525.95 | 10.2.0 | 2.2.0 |
|
74 |
+
| [efficientnet_v2S_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft_qdq_int8.onnx) | food-101 | Int8 | 384x384x3 | STM32N6 | 2700 | 6912 | 24451.31 | 10.2.0 | 2.2.0 |
|
75 |
+
| [efficientnet_v2B0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B0_224/efficientnet_v2B0_224_qdq_int8.onnx) | ImageNet | Int8 | 224x224x3 | STM32N6 | 1834.44 | 0.0 | 8179.67 | 10.2.0 | 2.2.0 |
|
76 |
+
| [efficientnet_v2B1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B1_240/efficientnet_v2B1_240_qdq_int8.onnx) | ImageNet | Int8 | 240x240x3 | STM32N6 | 2589.97 | 0.0 | 9459.92 | 10.2.0 | 2.2.0 |
|
77 |
+
| [efficientnet_v2B2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260_qdq_int8.onnx) | ImageNet | Int8 | 260x260x3 | STM32N6 | 2629.56 | 528.12 | 11765.99 | 10.2.0 | 2.2.0 |
|
78 |
+
| [efficientnet_v2S_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384_qdq_int8.onnx) | ImageNet | Int8 | 384x384x3 | STM32N6 | 2700 | 6912 | 25579.03 | 10.2.0 | 2.2.0 |
|
79 |
|
80 |
|
81 |
### Reference **NPU** inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
82 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
83 |
+
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-----------|----------------------|-------------------------|
|
84 |
+
| [efficientnet_v2B0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B0_224_fft/efficientnet_v2B0_224_fft_qdq_int8.onnx) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 52.05 | 19.21 | 10.2.0 | 2.2.0 |
|
85 |
+
| [efficientnet_v2B1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft_qdq_int8.onnx) | food-101 | Int8 | 240x240x3 | STM32N6570-DK | NPU/MCU | 70.91 | 14.1 | 10.2.0 | 2.2.0 |
|
86 |
+
| [efficientnet_v2B2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft_qdq_int8.onnx) | food-101 | Int8 | 260x260x3 | STM32N6570-DK | NPU/MCU | 142.62 | 7.01 | 10.2.0 | 2.2.0 |
|
87 |
+
| [efficientnet_v2S_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft_qdq_int8.onnx) | food-101 | Int8 | 384x384x3 | STM32N6570-DK | NPU/MCU | 816.34 | 1.22 | 10.2.0 | 2.2.0 |
|
88 |
+
| [efficientnet_v2B0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B0_224/efficientnet_v2B0_224_qdq_int8.onnx) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 55.27 | 18.09 | 10.2.0 | 2.2.0 |
|
89 |
+
| [efficientnet_v2B1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B1_240/efficientnet_v2B1_240_qdq_int8.onnx) | ImageNet | Int8 | 240x240x3 | STM32N6570-DK | NPU/MCU | 74.48 | 13.34 | 10.2.0 | 2.2.0 |
|
90 |
+
| [efficientnet_v2B2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260_qdq_int8.onnx) | ImageNet | Int8 | 260x260x3 | STM32N6570-DK | NPU/MCU | 145.27 | 6.88 | 10.2.0 | 2.2.0 |
|
91 |
+
| [efficientnet_v2S_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384_qdq_int8.onnx) | ImageNet | Int8 | 384x384x3 | STM32N6570-DK | NPU/MCU | 785.01 | 1.27 | 10.2.0 | 2.2.0 |
|
92 |
|
93 |
* The deployment of all the models listed in the table is supported, except for the efficientnet_v2S_384 model, for which support is coming soon.
|
94 |
### Accuracy with Food-101 dataset
|
95 |
|
96 |
+
Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/), Quotation[[3]](#3) , Number of classes: 101 , Number of images: 101 000
|
97 |
|
98 |
| Model | Format | Resolution | Top 1 Accuracy |
|
99 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|----------------|
|
|
|
101 |
| [efficientnet_v2B0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B0_224_fft/efficientnet_v2B0_224_fft_qdq_int8.onnx) | Int8 | 224x224x3 | 81.1 % |
|
102 |
| [efficientnet_v2B1_240_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft.h5) | Float | 240x240x3 | 83.23 % |
|
103 |
| [efficientnet_v2B1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft_qdq_int8.onnx) | Int8 | 240x240x3 | 82.95 % |
|
104 |
+
| [efficientnet_v2B2_260_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft.h5) | Float | 260x260x3 | 84.35 % |
|
105 |
| [efficientnet_v2B2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft_qdq_int8.onnx) | Int8 | 260x260x3 | 84.04 % |
|
106 |
| [efficientnet_v2S_384_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft.h5) | Float | 384x384x3 | 88.16 % |
|
107 |
| [efficientnet_v2S_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft_qdq_int8.onnx) | Int8 | 384x384x3 | 87.34 % |
|
|
|
109 |
|
110 |
### Accuracy with ImageNet
|
111 |
|
112 |
+
Dataset details: [link](https://www.image-net.org), Quotation[[4]](#4).
|
113 |
Number of classes: 1000.
|
114 |
To perform the quantization, we calibrated the activations with a random subset of the training set.
|
115 |
For the sake of simplicity, the accuracy reported here was estimated on the 10000 labelled images of the validation set.
|
|
|
122 |
| [efficientnet_v2B1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B1_240/efficientnet_v2B1_240_qdq_int8.onnx) | Int8 | 240x240x3 | 75.5 % |
|
123 |
| [efficientnet_v2B2_260](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260.h5) | Float | 260x260x3 | 76.58 % |
|
124 |
| [efficientnet_v2B2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260_qdq_int8.onnx) | Int8 | 260x260x3 | 76.26 % |
|
125 |
+
| [efficientnet_v2S_384](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384.h5) | Float | 384x384x3 | 83.52 % |
|
126 |
| [efficientnet_v2S_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384_qdq_int8.onnx) | Int8 | 384x384x3 | 83.07 % |
|
127 |
|
128 |
|
|
|
144 |
|
145 |
<a id="4">[4]</a>
|
146 |
Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei.
|
147 |
+
(* = equal contribution) ImageNet Large Scale Visual Recognition Challenge.
|
|