Update ST Model Zoo
Browse files
README.md
CHANGED
@@ -1,10 +1,3 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: sla0044
|
4 |
-
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32aimodelzoo/speech_enhancement/LICENSE.md
|
6 |
-
pipeline_tag: audio-to-audio
|
7 |
-
---
|
8 |
# STFT-TCNN
|
9 |
|
10 |
## **Use case** : `speech enhancement`
|
@@ -62,7 +55,7 @@ Measures are done with default STEDGEAI configuration with enabled input / outpu
|
|
62 |
### Reference **NPU** memory footprint
|
63 |
|Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
|
64 |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
65 |
-
| [STFT-TCNN Medium](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/speech_enhancement/stft_tcnn/ST_pretrainedmodel_public_dataset/valentini/stft_tcnn_medium_sigmoid_257x40_qdq_int8.onnx) | valentini | Int8 | 257x40 | STM32N6 | 100.09 | 0.0 |
|
66 |
|
67 |
### Reference **NPU** inference time
|
68 |
|
@@ -75,7 +68,7 @@ You can expect significant improvements once this issue is resolved.
|
|
75 |
|
76 |
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
77 |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
78 |
-
| [STFT-TCNN medium](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/speech_enhancement/stft_tcnn/ST_pretrainedmodel_public_dataset/valentini/stft_tcnn_medium_sigmoid_257x40_qdq_int8.onnx) | valentini | Int8 | 257x40 | STM32N6570-DK | NPU/MCU |
|
79 |
|
80 |
|
81 |
### Metrics on the Valentini dataset
|
@@ -101,5 +94,3 @@ The models provided here typically have trouble denoising speech at SNRs beyond
|
|
101 |
|
102 |
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
|
103 |
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# STFT-TCNN
|
2 |
|
3 |
## **Use case** : `speech enhancement`
|
|
|
55 |
### Reference **NPU** memory footprint
|
56 |
|Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
|
57 |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
58 |
+
| [STFT-TCNN Medium](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/speech_enhancement/stft_tcnn/ST_pretrainedmodel_public_dataset/valentini/stft_tcnn_medium_sigmoid_257x40_qdq_int8.onnx) | valentini | Int8 | 257x40 | STM32N6 | 100.09 | 0.0 | 1599.39 | 10.2.0 | 2.2.0 |
|
59 |
|
60 |
### Reference **NPU** inference time
|
61 |
|
|
|
68 |
|
69 |
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
70 |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
71 |
+
| [STFT-TCNN medium](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/speech_enhancement/stft_tcnn/ST_pretrainedmodel_public_dataset/valentini/stft_tcnn_medium_sigmoid_257x40_qdq_int8.onnx) | valentini | Int8 | 257x40 | STM32N6570-DK | NPU/MCU | 52.09 | 19.19 | 10.2.0 | 2.2.0 |
|
72 |
|
73 |
|
74 |
### Metrics on the Valentini dataset
|
|
|
94 |
|
95 |
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
|
96 |
|
|
|
|