Image Segmentation
FBAGSTM commited on
Commit
5d03aa6
·
verified ·
1 Parent(s): 8276a81

Update ST Model Zoo

Browse files
Files changed (1) hide show
  1. README.md +9 -13
README.md CHANGED
@@ -1,10 +1,3 @@
1
- ---
2
- license: other
3
- license_name: sla0044
4
- license_link: >-
5
- https://github.com/STMicroelectronics/stm32ai-modelzoo/instance_segmentation/yolov8n_seg/LICENSE.md
6
- pipeline_tag: image-segmentation
7
- ---
8
  # Yolov8n_seg
9
 
10
  ## **Use case** : `Instance segmentation`
@@ -39,22 +32,27 @@ Yolov8n_seg is implemented in Pytorch by Ultralytics and is quantized in int8 fo
39
 
40
  ## Metrics
41
  Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
 
 
 
 
 
42
 
43
 
44
  ### Reference **NPU** memory footprint based on COCO dataset
45
 
46
  |Model | Dataset | Format | Resolution | Series | Internal RAM (KiB)| External RAM (KiB)| Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
47
  |----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
48
- | [Yolov8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_256_quant_pc_uf_seg_coco-st.tflite) | COCO | Int8 | 256x256x3 | STM32N6 | 2128 | 0.0 | 3425.39 | 10.0.0 | 2.0.0
49
- | [Yolov8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_320_quant_pc_uf_seg_coco-st.tflite) | COCO | Int8 | 320x320x3 | STM32N6 | 2564.06 | 0.0 | 3467.56 | 10.0.0 | 2.0.0 |
50
 
51
 
52
 
53
  ### Reference **NPU** inference time based on COCO Person dataset
54
  | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
55
  |--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
56
- | [YOLOv8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_256_quant_pc_uf_seg_coco-st.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 37.59 | 26.61 | 10.0.0 | 2.0.0 |
57
- | [YOLOv8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_320_quant_pc_uf_seg_coco-st.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 53.21 | 18.79 | 10.0.0 | 2.0.0 |
58
 
59
 
60
 
@@ -70,5 +68,3 @@ Please refer to the [Ultralytics documentation](https://docs.ultralytics.com/tas
70
  <a id="1">[1]</a> T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, "Microsoft COCO: Common Objects in Context." European Conference on Computer Vision (ECCV), 2014. [Link](https://arxiv.org/abs/1405.0312)
71
 
72
  <a id="2">[2]</a> Ultralytics, "YOLOv8: Next-Generation Object Detection and Segmentation Model." Ultralytics, 2023. [Link](https://github.com/ultralytics/ultralytics)
73
-
74
-
 
 
 
 
 
 
 
 
1
  # Yolov8n_seg
2
 
3
  ## **Use case** : `Instance segmentation`
 
32
 
33
  ## Metrics
34
  Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
35
+ > [!CAUTION]
36
+ > All YOLOv8 hyperlinks in the tables below link to an external GitHub folder, which is subject to its own license terms:
37
+ https://github.com/stm32-hotspot/ultralytics/blob/main/LICENSE
38
+ Please also check the folder's README.md file for detailed information about its use and content:
39
+ https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/README.md
40
 
41
 
42
  ### Reference **NPU** memory footprint based on COCO dataset
43
 
44
  |Model | Dataset | Format | Resolution | Series | Internal RAM (KiB)| External RAM (KiB)| Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
45
  |----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
46
+ | [Yolov8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_256_quant_pc_ii_seg_coco-st.tflite) | COCO | Int8 | 256x256x3 | STM32N6 | 1119.06 | 0.0 | 3393.42 | 10.2.0 | 2.2.0
47
+ | [Yolov8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_320_quant_pc_ii_seg_coco-st.tflite) | COCO | Int8 | 320x320x3 | STM32N6 | 1733.25 | 0.0 | 3435.34 | 10.2.0 | 2.2.0 |
48
 
49
 
50
 
51
  ### Reference **NPU** inference time based on COCO Person dataset
52
  | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
53
  |--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
54
+ | [YOLOv8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_256_quant_pc_ii_seg_coco-st.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 33.64 | 29.72 | 10.2.0 | 2.2.0 |
55
+ | [YOLOv8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_320_quant_pc_ii_seg_coco-st.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 43.8 | 22.83 | 10.2.0 | 2.2.0 |
56
 
57
 
58
 
 
68
  <a id="1">[1]</a> T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, "Microsoft COCO: Common Objects in Context." European Conference on Computer Vision (ECCV), 2014. [Link](https://arxiv.org/abs/1405.0312)
69
 
70
  <a id="2">[2]</a> Ultralytics, "YOLOv8: Next-Generation Object Detection and Segmentation Model." Ultralytics, 2023. [Link](https://github.com/ultralytics/ultralytics)