Update ST Model Zoo
Browse files
README.md
CHANGED
@@ -1,10 +1,3 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: sla0044
|
4 |
-
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32ai-modelzoo/instance_segmentation/yolov8n_seg/LICENSE.md
|
6 |
-
pipeline_tag: image-segmentation
|
7 |
-
---
|
8 |
# Yolov8n_seg
|
9 |
|
10 |
## **Use case** : `Instance segmentation`
|
@@ -39,22 +32,27 @@ Yolov8n_seg is implemented in Pytorch by Ultralytics and is quantized in int8 fo
|
|
39 |
|
40 |
## Metrics
|
41 |
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
|
44 |
### Reference **NPU** memory footprint based on COCO dataset
|
45 |
|
46 |
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB)| External RAM (KiB)| Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|
47 |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
48 |
-
| [Yolov8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/
|
49 |
-
| [Yolov8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/
|
50 |
|
51 |
|
52 |
|
53 |
### Reference **NPU** inference time based on COCO Person dataset
|
54 |
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
55 |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
56 |
-
| [YOLOv8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/
|
57 |
-
| [YOLOv8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/
|
58 |
|
59 |
|
60 |
|
@@ -70,5 +68,3 @@ Please refer to the [Ultralytics documentation](https://docs.ultralytics.com/tas
|
|
70 |
<a id="1">[1]</a> T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, "Microsoft COCO: Common Objects in Context." European Conference on Computer Vision (ECCV), 2014. [Link](https://arxiv.org/abs/1405.0312)
|
71 |
|
72 |
<a id="2">[2]</a> Ultralytics, "YOLOv8: Next-Generation Object Detection and Segmentation Model." Ultralytics, 2023. [Link](https://github.com/ultralytics/ultralytics)
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Yolov8n_seg
|
2 |
|
3 |
## **Use case** : `Instance segmentation`
|
|
|
32 |
|
33 |
## Metrics
|
34 |
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
35 |
+
> [!CAUTION]
|
36 |
+
> All YOLOv8 hyperlinks in the tables below link to an external GitHub folder, which is subject to its own license terms:
|
37 |
+
https://github.com/stm32-hotspot/ultralytics/blob/main/LICENSE
|
38 |
+
Please also check the folder's README.md file for detailed information about its use and content:
|
39 |
+
https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/README.md
|
40 |
|
41 |
|
42 |
### Reference **NPU** memory footprint based on COCO dataset
|
43 |
|
44 |
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB)| External RAM (KiB)| Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|
45 |
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
46 |
+
| [Yolov8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_256_quant_pc_ii_seg_coco-st.tflite) | COCO | Int8 | 256x256x3 | STM32N6 | 1119.06 | 0.0 | 3393.42 | 10.2.0 | 2.2.0
|
47 |
+
| [Yolov8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_320_quant_pc_ii_seg_coco-st.tflite) | COCO | Int8 | 320x320x3 | STM32N6 | 1733.25 | 0.0 | 3435.34 | 10.2.0 | 2.2.0 |
|
48 |
|
49 |
|
50 |
|
51 |
### Reference **NPU** inference time based on COCO Person dataset
|
52 |
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
53 |
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
54 |
+
| [YOLOv8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_256_quant_pc_ii_seg_coco-st.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 33.64 | 29.72 | 10.2.0 | 2.2.0 |
|
55 |
+
| [YOLOv8n seg per channel](https://github.com/stm32-hotspot/ultralytics/blob/main/examples/YOLOv8-STEdgeAI/stedgeai_models/segmentation/yolov8n_320_quant_pc_ii_seg_coco-st.tflite) | COCO-Person | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 43.8 | 22.83 | 10.2.0 | 2.2.0 |
|
56 |
|
57 |
|
58 |
|
|
|
68 |
<a id="1">[1]</a> T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, "Microsoft COCO: Common Objects in Context." European Conference on Computer Vision (ECCV), 2014. [Link](https://arxiv.org/abs/1405.0312)
|
69 |
|
70 |
<a id="2">[2]</a> Ultralytics, "YOLOv8: Next-Generation Object Detection and Segmentation Model." Ultralytics, 2023. [Link](https://github.com/ultralytics/ultralytics)
|
|
|
|