File size: 3,093 Bytes
6ec6b6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
frameworks:
- Pytorch
tasks:
- text-to-image-synthesis
#model-type:
##如 gpt、phi、llama、chatglm、baichuan 等
#- gpt
#domain:
##如 nlp、cv、audio、multi-modal
#- nlp
#language:
##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa
#- cn
#metrics:
##如 CIDEr、Blue、ROUGE 等
#- CIDEr
#tags:
##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他
#- pretrained
#tools:
##如 vllm、fastchat、llamacpp、AdaSeq 等
#- vllm
base_model:
- Qwen/Qwen-Image
base_model_relation: adapter
---
# Qwen-Image Image Structure Control Model

## Model Introduction
This model is a structure control model for images, trained based on [Qwen-Image](https://www.modelscope.cn/models/Qwen/Qwen-Image). The model architecture is ControlNet, capable of controlling the generated image structure according to edge detection (Canny) maps. The training framework is built upon [DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio) and the dataset used is [BLIP3o](https://modelscope.cn/datasets/BLIP3o/BLIP3o-60k)。
## Effect Demonstration
|Structure Map|Generated Image 1|Generated Image 2|
|-|-|-|
||||
||||
||||
## Inference Code
```
git clone https://github.com/modelscope/DiffSynth-Studio.git
cd DiffSynth-Studio
pip install -e .
```
```python
from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig, ControlNetInput
from PIL import Image
import torch
from modelscope import dataset_snapshot_download
pipe = QwenImagePipeline.from_pretrained(
torch_dtype=torch.bfloat16,
device="cuda",
model_configs=[
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"),
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"),
ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"),
ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Canny", origin_file_pattern="model.safetensors"),
],
tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"),
)
dataset_snapshot_download(
dataset_id="DiffSynth-Studio/example_image_dataset",
local_dir="./data/example_image_dataset",
allow_file_pattern="canny/image_1.jpg"
)
controlnet_image = Image.open("data/example_image_dataset/canny/image_1.jpg").resize((1328, 1328))
prompt = "A puppy with shiny, smooth fur and lively eyes, with a spring garden full of cherry blossoms as the background, beautiful and warm."
image = pipe(
prompt, seed=0,
blockwise_controlnet_inputs=[ControlNetInput(image=controlnet_image)]
)
image.save("image.jpg")
```
---
license: apache-2.0
---
|