File size: 1,013 Bytes
e9f632d
 
 
 
b4d0b1b
 
 
e9f632d
b4d0b1b
 
e9f632d
 
b4d0b1b
 
 
 
 
e9f632d
 
 
 
b4d0b1b
4490b1a
 
 
 
e9f632d
 
 
 
 
 
340dfec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
---
model_name: Common Metaphors Detection Model
license: apache-2.0
tags:
- metaphor-detection
- text-classification
- transformers
metrics:
- accuracy: 64%
- accuracy
language: en
dataset: Sasidhar1826/common_metaphors_detection_dataset
datasets:
- Sasidhar1826/common_metaphors_detection_dataset
base_model:
- google-bert/bert-base-uncased
pipeline_tag: text-classification
---

# Common Metaphors Detection Model

This model achieves an **accuracy of 64%** on **specific metaphor data of small dataset**.
This is build upon **bert-base-uncased**
this is not yet too much reliable to use in full scale as the metaphors meanings
varies over the context of the sentences and the trained data is specific for only some cases.
If you train it over **VU Amsterdam Metaphor Corpus** you can get better results in overall.

## Usage
You can load this model in your Hugging Face code as follows:
```python
from transformers import AutoModel

model = AutoModel.from_pretrained('Sasidhar1826/common_metaphors_detection')