File size: 20,740 Bytes
6c9ac8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
# Migrate Configuration File from MMDetection 2.x to 3.x

The configuration file of MMDetection 3.x has undergone significant changes in comparison to the 2.x version. This document explains how to migrate 2.x configuration files to 3.x.

In the previous tutorial [Learn about Configs](../user_guides/config.md), we used Mask R-CNN as an example to introduce the configuration file structure of MMDetection 3.x. Here, we will follow the same structure to demonstrate how to migrate 2.x configuration files to 3.x.

## Model Configuration

There have been no major changes to the model configuration in 3.x compared to 2.x. For the model's backbone, neck, head, as well as train_cfg and test_cfg, the parameters remain the same as in version 2.x.

On the other hand, we have added the `DataPreprocessor` module in MMDetection 3.x. The configuration for the `DataPreprocessor` module is located in `model.data_preprocessor`. It is used to preprocess the input data, such as normalizing input images and padding images of different sizes into batches, and loading images from memory to VRAM. This configuration replaces the `Normalize` and `Pad` modules in `train_pipeline` and `test_pipeline` of the earlier version.

<table class="docutils">
<tr>
<td>2.x Config</td>
<td>

```python
# Image normalization parameters
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53],
    std=[58.395, 57.12, 57.375],
    to_rgb=True)
pipeline=[
    ...,
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),  # Padding the image to multiples of 32
    ...
]
```

</td>
<tr>
<td>2.x Config</td>
<td>

```python
model = dict(
    data_preprocessor=dict(
        type='DetDataPreprocessor',
        # Image normalization parameters
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        bgr_to_rgb=True,
        # Image padding parameters
        pad_mask=True,  # In instance segmentation, the mask needs to be padded
        pad_size_divisor=32)  # Padding the image to multiples of 32
)

```

</td>
</tr>
</table>

## Dataset and Evaluator Configuration

The dataset and evaluator configurations have undergone major changes compared to version 2.x. We will introduce how to migrate from version 2.x to version 3.x from three aspects: Dataloader and Dataset, Data transform pipeline, and Evaluator configuration.

### Dataloader and Dataset Configuration

In the new version, we set the data loading settings consistent with PyTorch's official DataLoader,
making it easier for users to understand and get started with.
We put the data loading settings for training, validation, and testing separately in `train_dataloader`, `val_dataloader`, and `test_dataloader`.
Users can set different parameters for these dataloaders.
The input parameters are basically the same as those required by [PyTorch DataLoader](https://pytorch.org/docs/stable/data.html?highlight=dataloader#torch.utils.data.DataLoader).

This way, we put the unconfigurable parameters in version 2.x, such as `sampler`, `batch_sampler`, and `persistent_workers`, in the configuration file, so that users can set dataloader parameters more flexibly.

Users can set the dataset configuration through `train_dataloader.dataset`, `val_dataloader.dataset`, and `test_dataloader.dataset`, which correspond to `data.train`, `data.val`, and `data.test` in version 2.x.

<table class="docutils">
<tr>
<td>2.x Config</td>
<td>

```python
data = dict(
    samples_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        pipeline=test_pipeline))
```

</td>
<tr>
<td>3.x Config</td>
<td>

```python
train_dataloader = dict(
    batch_size=2,
    num_workers=2,
    persistent_workers=True,  # Avoid recreating subprocesses after each iteration
    sampler=dict(type='DefaultSampler', shuffle=True),  # Default sampler, supports both distributed and non-distributed training
    batch_sampler=dict(type='AspectRatioBatchSampler'),  # Default batch_sampler, used to ensure that images in the batch have similar aspect ratios, so as to better utilize graphics memory
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='annotations/instances_train2017.json',
        data_prefix=dict(img='train2017/'),
        filter_cfg=dict(filter_empty_gt=True, min_size=32),
        pipeline=train_pipeline))
# In version 3.x, validation and test dataloaders can be configured independently
val_dataloader = dict(
    batch_size=1,
    num_workers=2,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='annotations/instances_val2017.json',
        data_prefix=dict(img='val2017/'),
        test_mode=True,
        pipeline=test_pipeline))
test_dataloader = val_dataloader  # The configuration of the testing dataloader is the same as that of the validation dataloader, which is omitted here

```

</td>
</tr>
</table>

### Data Transform Pipeline Configuration

As mentioned earlier, we have separated the normalization and padding configurations for images from the `train_pipeline` and `test_pipeline`, and have placed them in `model.data_preprocessor` instead. Hence, in the 3.x version of the pipeline, we no longer require the `Normalize` and `Pad` transforms.

At the same time, we have also refactored the transform responsible for packing the data format, and have merged the `Collect` and `DefaultFormatBundle` transforms into `PackDetInputs`. This transform is responsible for packing the data from the data pipeline into the input format of the model. For more details on the input format conversion, please refer to the [data flow documentation](../advanced_guides/data_flow.md).

Below, we will use the `train_pipeline` of Mask R-CNN as an example, to demonstrate how to migrate from the 2.x configuration to the 3.x configuration:

<table class="docutils">
<tr>
<td>2.x Config</td>
<td>

```python
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
```

</td>
<tr>
<td>3.x Config</td>
<td>

```python
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PackDetInputs')
]
```

</td>
</tr>
</table>

For the `test_pipeline`, apart from removing the `Normalize` and `Pad` transforms, we have also separated the data augmentation for testing (TTA) from the normal testing process, and have removed `MultiScaleFlipAug`. For more information on how to use the new TTA version, please refer to the [TTA documentation](../advanced_guides/tta.md).

Below, we will again use the `test_pipeline` of Mask R-CNN as an example, to demonstrate how to migrate from the 2.x configuration to the 3.x configuration:

<table class="docutils">
<tr>
<td>2.x Config</td>
<td>

```python
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
```

</td>
<tr>
<td>3.x Config</td>
<td>

```python
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='Resize', scale=(1333, 800), keep_ratio=True),
    dict(
        type='PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]
```

</td>
</tr>
</table>

In addition, we have also refactored some data augmentation transforms. The following table lists the mapping between the transforms used in the 2.x version and the 3.x version:

<table class="docutils">
<thead>
  <tr>
    <th>Name</th>
    <th>2.x Config</th>
    <th>3.x Config</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td>Resize</td>
<td>

```python
dict(type='Resize',
     img_scale=(1333, 800),
     keep_ratio=True)
```

</td>

<td>

```python
dict(type='Resize',
     scale=(1333, 800),
     keep_ratio=True)
```

</td>
  </tr>
  <tr>
    <td>RandomResize</td>
<td>

```python
dict(
    type='Resize',
    img_scale=[
        (1333, 640), (1333, 800)],
    multiscale_mode='range',
    keep_ratio=True)
```

</td>
<td>

```python
dict(
    type='RandomResize',
    scale=[
        (1333, 640), (1333, 800)],
    keep_ratio=True)
```

</td>
  </tr>
  <tr>
    <td>RandomChoiceResize</td>
<td>

```python
dict(
    type='Resize',
    img_scale=[
        (1333, 640), (1333, 672),
        (1333, 704), (1333, 736),
        (1333, 768), (1333, 800)],
    multiscale_mode='value',
    keep_ratio=True)
```

</td>
<td>

```python
dict(
    type='RandomChoiceResize',
    scales=[
        (1333, 640), (1333, 672),
        (1333, 704), (1333, 736),
        (1333, 768), (1333, 800)],
    keep_ratio=True)
```

</td>
  </tr>

<tr>
    <td>RandomFlip</td>
<td>

```python
dict(type='RandomFlip', flip_ratio=0.5)
```

</td>
<td>

```python
dict(type='RandomFlip', prob=0.5)
```

</td>
  </tr>

</tbody>
</table>

### 评测器配置

In version 3.x, model accuracy evaluation is no longer tied to the dataset, but is instead accomplished through the use of an Evaluator.
The Evaluator configuration is divided into two parts: `val_evaluator` and `test_evaluator`. The `val_evaluator` is used for validation dataset evaluation, while the `test_evaluator` is used for testing dataset evaluation.
This corresponds to the `evaluation` field in version 2.x.

The following table shows the corresponding relationship between Evaluators in version 2.x and 3.x.

<table class="docutils">
<thead>
  <tr>
    <th>Metric Name</th>
    <th>2.x Config</th>
    <th>3.x Config</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td>COCO</td>
<td>

```python
data = dict(
    val=dict(
        type='CocoDataset',
        ann_file=data_root + 'annotations/instances_val2017.json'))
evaluation = dict(metric=['bbox', 'segm'])
```

</td>

<td>

```python
val_evaluator = dict(
    type='CocoMetric',
    ann_file=data_root + 'annotations/instances_val2017.json',
    metric=['bbox', 'segm'],
    format_only=False)
```

</td>
  </tr>
  <tr>
    <td>Pascal VOC</td>
<td>

```python
data = dict(
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt'))
evaluation = dict(metric='mAP')
```

</td>
<td>

```python
val_evaluator = dict(
    type='VOCMetric',
    metric='mAP',
    eval_mode='11points')
```

</td>
  </tr>
  <tr>
    <td>OpenImages</td>
<td>

```python
data = dict(
    val=dict(
        type='OpenImagesDataset',
        ann_file=data_root + 'annotations/validation-annotations-bbox.csv',
        img_prefix=data_root + 'OpenImages/validation/',
        label_file=data_root + 'annotations/class-descriptions-boxable.csv',
        hierarchy_file=data_root +
        'annotations/bbox_labels_600_hierarchy.json',
        meta_file=data_root + 'annotations/validation-image-metas.pkl',
        image_level_ann_file=data_root +
        'annotations/validation-annotations-human-imagelabels-boxable.csv'))
evaluation = dict(interval=1, metric='mAP')
```

</td>
<td>

```python
val_evaluator = dict(
    type='OpenImagesMetric',
    iou_thrs=0.5,
    ioa_thrs=0.5,
    use_group_of=True,
    get_supercategory=True)
```

</td>
  </tr>

<tr>
    <td>CityScapes</td>
<td>

```python
data = dict(
    val=dict(
        type='CityScapesDataset',
        ann_file=data_root +
        'annotations/instancesonly_filtered_gtFine_val.json',
        img_prefix=data_root + 'leftImg8bit/val/',
        pipeline=test_pipeline))
evaluation = dict(metric=['bbox', 'segm'])
```

</td>
<td>

```python
val_evaluator = [
    dict(
        type='CocoMetric',
        ann_file=data_root +
        'annotations/instancesonly_filtered_gtFine_val.json',
        metric=['bbox', 'segm']),
    dict(
        type='CityScapesMetric',
        ann_file=data_root +
        'annotations/instancesonly_filtered_gtFine_val.json',
        seg_prefix=data_root + '/gtFine/val',
        outfile_prefix='./work_dirs/cityscapes_metric/instance')
]
```

</td>
  </tr>

</tbody>
</table>

## Configuration for Training and Testing

<table class="docutils">
<tr>
<td>2.x Config</td>
<td>

```python
runner = dict(
    type='EpochBasedRunner',  # Type of training loop
    max_epochs=12)  # Maximum number of training epochs
evaluation = dict(interval=2)  # Interval for evaluation, check the performance every 2 epochs
```

</td>
<tr>
<td>3.x Config</td>
<td>

```python
train_cfg = dict(
    type='EpochBasedTrainLoop',  # Type of training loop, please refer to https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py
    max_epochs=12,  # Maximum number of training epochs
    val_interval=2)  # Interval for validation, check the performance every 2 epochs
val_cfg = dict(type='ValLoop')  # Type of validation loop
test_cfg = dict(type='TestLoop')  # Type of testing loop
```

</td>
</tr>
</table>

## Optimization Configuration

The configuration for optimizer and gradient clipping is moved to the `optim_wrapper` field.
The following table shows the correspondences for optimizer configuration between 2.x version and 3.x version:

<table class="docutils">
<tr>
<td>2.x Config</td>
<td>

```python
optimizer = dict(
    type='SGD',  # Optimizer: Stochastic Gradient Descent
    lr=0.02,  # Base learning rate
    momentum=0.9,  # SGD with momentum
    weight_decay=0.0001)  # Weight decay
optimizer_config = dict(grad_clip=None)  # Configuration for gradient clipping, set to None to disable
```

</td>
<tr>
<td>3.x Config</td>
<td>

```python
optim_wrapper = dict(  # Configuration for the optimizer wrapper
    type='OptimWrapper',  # Type of optimizer wrapper, you can switch to AmpOptimWrapper to enable mixed precision training
    optimizer=dict(  # Optimizer configuration, supports various PyTorch optimizers, please refer to https://pytorch.org/docs/stable/optim.html#algorithms
        type='SGD',  # SGD
        lr=0.02,  # Base learning rate
        momentum=0.9,  # SGD with momentum
        weight_decay=0.0001),  # Weight decay
    clip_grad=None,  # Configuration for gradient clipping, set to None to disable. For usage, please see https://mmengine.readthedocs.io/en/latest/tutorials/optimizer.html
    )
```

</td>
</tr>
</table>

The configuration for learning rate is also moved from the `lr_config` field to the `param_scheduler` field. The `param_scheduler` configuration is more similar to PyTorch's learning rate scheduler and more flexible. The following table shows the correspondences for learning rate configuration between 2.x version and 3.x version:

<table class="docutils">
<tr>
<td>2.x Config</td>
<td>

```python
lr_config = dict(
    policy='step',  # Use multi-step learning rate strategy during training
    warmup='linear',  # Use linear learning rate warmup
    warmup_iters=500,  # End warmup at iteration 500
    warmup_ratio=0.001,  # Coefficient for learning rate warmup
    step=[8, 11],  # Learning rate decay at which epochs
    gamma=0.1)  # Learning rate decay coefficient

```

</td>
<tr>
<td>3.x Config</td>
<td>

```python
param_scheduler = [
    dict(
        type='LinearLR',  # Use linear learning rate warmup
        start_factor=0.001, # Coefficient for learning rate warmup
        by_epoch=False,  # Update the learning rate during warmup at each iteration
        begin=0,  # Starting from the first iteration
        end=500),  # End at the 500th iteration
    dict(
        type='MultiStepLR',  # Use multi-step learning rate strategy during training
        by_epoch=True,  # Update the learning rate at each epoch
        begin=0,   # Starting from the first epoch
        end=12,  # Ending at the 12th epoch
        milestones=[8, 11],  # Learning rate decay at which epochs
        gamma=0.1)  # Learning rate decay coefficient
]

```

</td>
</tr>
</table>

For information on how to migrate other learning rate adjustment policies, please refer to the [learning rate migration document of MMEngine](https://mmengine.readthedocs.io/zh_CN/latest/migration/param_scheduler.html).

## Migration of Other Configurations

### Configuration for Saving Checkpoints

<table class="docutils">
<thead>
  <tr>
    <th>Function</th>
    <th>2.x Config</th>
    <th>3.x Config</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td>Set Save Interval</td>
<td>

```python
checkpoint_config = dict(
    interval=1)
```

</td>

<td>

```python
default_hooks = dict(
    checkpoint=dict(
        type='CheckpointHook',
        interval=1))
```

</td>
  </tr>

<tr>
    <td>Save Best Model</td>
<td>

```python
evaluation = dict(
    save_best='auto')
```

</td>
<td>

```python
default_hooks = dict(
    checkpoint=dict(
        type='CheckpointHook',
        save_best='auto'))
```

</td>
  </tr>

<tr>
    <td>Keep Latest Model</td>
<td>

```python
checkpoint_config = dict(
    max_keep_ckpts=3)
```

</td>
<td>

```python
default_hooks = dict(
    checkpoint=dict(
        type='CheckpointHook',
        max_keep_ckpts=3))
```

</td>
  </tr>

</tbody>
</table>

### Logging Configuration

In MMDetection 3.x, the logging and visualization of the log are carried out respectively by the logger and visualizer in MMEngine. The following table shows the comparison between the configuration of printing logs and visualizing logs in MMDetection 2.x and 3.x.

<table class="docutils">
<thead>
  <tr>
    <th>Function</th>
    <th>2.x Config</th>
    <th>3.x Config</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td>Set Log Printing Interval</td>
<td>

```python
log_config = dict(interval=50)
```

</td>

<td>

```python
default_hooks = dict(
    logger=dict(type='LoggerHook', interval=50))
# Optional: set moving average window size
log_processor = dict(
    type='LogProcessor', window_size=50)
```

</td>
  </tr>

<tr>
    <td>Use TensorBoard or WandB to visualize logs</td>
<td>

```python
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        dict(type='TensorboardLoggerHook'),
        dict(type='MMDetWandbHook',
             init_kwargs={
                'project': 'mmdetection',
                'group': 'maskrcnn-r50-fpn-1x-coco'
             },
             interval=50,
             log_checkpoint=True,
             log_checkpoint_metadata=True,
             num_eval_images=100)
    ])
```

</td>
<td>

```python
vis_backends = [
    dict(type='LocalVisBackend'),
    dict(type='TensorboardVisBackend'),
    dict(type='WandbVisBackend',
         init_kwargs={
            'project': 'mmdetection',
            'group': 'maskrcnn-r50-fpn-1x-coco'
         })
]
visualizer = dict(
    type='DetLocalVisualizer',
    vis_backends=vis_backends,
    name='visualizer')
```

</td>
  </tr>

</tbody>
</table>

For visualization-related tutorials, please refer to [Visualization Tutorial](../user_guides/visualization.md) of MMDetection.

### Runtime Configuration

The runtime configuration fields in version 3.x have been adjusted, and the specific correspondence is as follows:

<table class="docutils">
<thead>
  <tr>
    <th>2.x Config</th>
    <th>3.x Config</th>
  </tr>
</thead>
<tbody>

<tr>
<td>

```python
cudnn_benchmark = False
opencv_num_threads = 0
mp_start_method = 'fork'
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None


```

</td>
<td>

```python
env_cfg = dict(
    cudnn_benchmark=False,
    mp_cfg=dict(mp_start_method='fork',
                opencv_num_threads=0),
    dist_cfg=dict(backend='nccl'))
log_level = 'INFO'
load_from = None
resume = False
```

</td>
  </tr>

</tbody>
</table>