File size: 15,435 Bytes
6c9ac8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# Train predefined models on standard datasets

MMDetection also provides out-of-the-box tools for training detection models.
This section will show how to train _predefined_ models (under [configs](../../../configs)) on standard datasets i.e. COCO.

## Prepare datasets

Training requires preparing datasets too. See section [Prepare datasets](#prepare-datasets) above for details.

**Note**:
Currently, the config files under `configs/cityscapes` use COCO pre-trained weights to initialize.
You could download the existing models in advance if the network connection is unavailable or slow. Otherwise, it would cause errors at the beginning of training.

## Learning rate auto scaling

**Important**: The default learning rate in config files is for 8 GPUs and 2 sample per GPU (batch size = 8 * 2 = 16). And it had been set to `auto_scale_lr.base_batch_size` in `config/_base_/schedules/schedule_1x.py`. Learning rate will be automatically scaled base on this value when the batch size is `16`. Meanwhile, in order not to affect other codebase which based on mmdet, the flag `auto_scale_lr.enable` is set to `False` by default.

If you want to enable this feature, you need to add argument `--auto-scale-lr`. And you need to check the config name which you want to use before you process the command, because the config name indicates the default batch size.
By default, it is `8 x 2 = 16 batch size`, like `faster_rcnn_r50_caffe_fpn_90k_coco.py` or `pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py`. In other cases, you will see the config file name have `_NxM_` in dictating, like `cornernet_hourglass104_mstest_32x3_210e_coco.py` which batch size is `32 x 3 = 96`, or `scnet_x101_64x4d_fpn_8x1_20e_coco.py` which batch size is `8 x 1 = 8`.

**Please remember to check the bottom of the specific config file you want to use, it will have `auto_scale_lr.base_batch_size` if the batch size is not `16`. If you can't find those values, check the config file which in `_base_=[xxx]` and you will find it. Please do not modify its values if you want to automatically scale the LR.**

The basic usage of learning rate auto scaling is as follows.

```shell
python tools/train.py \
    ${CONFIG_FILE} \
    --auto-scale-lr \
    [optional arguments]
```

If you enabled this feature, the learning rate will be automatically scaled according to the number of GPUs on the machine and the batch size of training. See [linear scaling rule](https://arxiv.org/abs/1706.02677) for details. For example, If there are 4 GPUs and 2 pictures on each GPU, `lr = 0.01`, then if there are 16 GPUs and 4 pictures on each GPU, it will automatically scale to `lr = 0.08`.

If you don't want to use it, you need to calculate the learning rate according to the [linear scaling rule](https://arxiv.org/abs/1706.02677) manually then change `optimizer.lr` in specific config file.

## Training on a single GPU

We provide `tools/train.py` to launch training jobs on a single GPU.
The basic usage is as follows.

```shell
python tools/train.py \
    ${CONFIG_FILE} \
    [optional arguments]
```

During training, log files and checkpoints will be saved to the working directory, which is specified by `work_dir` in the config file or via CLI argument `--work-dir`.

By default, the model is evaluated on the validation set every epoch, the evaluation interval can be specified in the config file as shown below.

```python
# evaluate the model every 12 epochs.
train_cfg = dict(val_interval=12)
```

This tool accepts several optional arguments, including:

- `--work-dir ${WORK_DIR}`: Override the working directory.
- `--auto-resume`: resume from the latest checkpoint in the work_dir automatically.
- `--cfg-options 'Key=value'`: Overrides other settings in the used config.

## Training on CPU

The process of training on the CPU is consistent with single GPU training. We just need to disable GPUs before the training process.

```shell
export CUDA_VISIBLE_DEVICES=-1
```

And then run the script [above](#training-on-a-single-GPU).

**Note**:

We do not recommend users to use the CPU for training because it is too slow. We support this feature to allow users to debug on machines without GPU for convenience.

## Training on multiple GPUs

We provide `tools/dist_train.sh` to launch training on multiple GPUs.
The basic usage is as follows.

```shell
bash ./tools/dist_train.sh \
    ${CONFIG_FILE} \
    ${GPU_NUM} \
    [optional arguments]
```

Optional arguments remain the same as stated [above](#training-on-a-single-GPU).

### Launch multiple jobs simultaneously

If you would like to launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs,
you need to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use `dist_train.sh` to launch training jobs, you can set the port in the commands.

```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4
```

## Train with multiple machines

If you launch with multiple machines simply connected with ethernet, you can simply run the following commands:

On the first machine:

```shell
NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh $CONFIG $GPUS
```

On the second machine:

```shell
NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh $CONFIG $GPUS
```

Usually, it is slow if you do not have high-speed networking like InfiniBand.

## Manage jobs with Slurm

[Slurm](https://slurm.schedmd.com/) is a good job scheduling system for computing clusters.
On a cluster managed by Slurm, you can use `slurm_train.sh` to spawn training jobs. It supports both single-node and multi-node training.

The basic usage is as follows.

```shell
[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR}
```

Below is an example of using 16 GPUs to train Mask R-CNN on a Slurm partition named _dev_, and set the work-dir to some shared file systems.

```shell
GPUS=16 ./tools/slurm_train.sh dev mask_r50_1x configs/mask-rcnn_r50_fpn_1x_coco.py /nfs/xxxx/mask_rcnn_r50_fpn_1x
```

You can check [the source code](../../../tools/slurm_train.sh) to review full arguments and environment variables.

When using Slurm, the port option needs to be set in one of the following ways:

1. Set the port through `--options`. This is more recommended since it does not change the original configs.

   ```shell
   CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR} --options 'dist_params.port=29500'
   CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR} --options 'dist_params.port=29501'
   ```

2. Modify the config files to set different communication ports.

   In `config1.py`, set

   ```python
   dist_params = dict(backend='nccl', port=29500)
   ```

   In `config2.py`, set

   ```python
   dist_params = dict(backend='nccl', port=29501)
   ```

   Then you can launch two jobs with `config1.py` and `config2.py`.

   ```shell
   CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR}
   CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR}
   ```

# Train with customized datasets

In this part, you will know how to train predefined models with customized datasets and then test it. We use the [balloon dataset](https://github.com/matterport/Mask_RCNN/tree/master/samples/balloon) as an example to describe the whole process.

The basic steps are as below:

1. Prepare the customized dataset
2. Prepare a config
3. Train, test, and infer models on the customized dataset.

## Prepare the customized dataset

There are three ways to support a new dataset in MMDetection:

1. Reorganize the dataset into COCO format.
2. Reorganize the dataset into a middle format.
3. Implement a new dataset.

Usually, we recommend using the first two methods which are usually easier than the third.

In this note, we give an example of converting the data into COCO format.

**Note**: Datasets and metrics have been decoupled except CityScapes since MMDetection 3.0. Therefore, users can use any kind of evaluation metrics for any format of datasets during validation. For example: evaluate on COCO dataset with VOC metric, or evaluate on OpenImages dataset with both VOC and COCO metrics.

### COCO annotation format

The necessary keys of COCO format for instance segmentation are as below, for the complete details, please refer [here](https://cocodataset.org/#format-data).

```json
{
    "images": [image],
    "annotations": [annotation],
    "categories": [category]
}

image = {
    "id": int,
    "width": int,
    "height": int,
    "file_name": str,
}

annotation = {
    "id": int,
    "image_id": int,
    "category_id": int,
    "segmentation": RLE or [polygon],
    "area": float,
    "bbox": [x,y,width,height], # (x, y) are the coordinates of the upper left corner of the bbox
    "iscrowd": 0 or 1,
}

categories = [{
    "id": int,
    "name": str,
    "supercategory": str,
}]
```

Assume we use the balloon dataset.
After downloading the data, we need to implement a function to convert the annotation format into the COCO format. Then we can use implemented `CocoDataset` to load the data and perform training and evaluation.

If you take a look at the dataset, you will find the dataset format is as below:

```json
{'base64_img_data': '',
 'file_attributes': {},
 'filename': '34020010494_e5cb88e1c4_k.jpg',
 'fileref': '',
 'regions': {'0': {'region_attributes': {},
   'shape_attributes': {'all_points_x': [1020,
     1000,
     994,
     1003,
     1023,
     1050,
     1089,
     1134,
     1190,
     1265,
     1321,
     1361,
     1403,
     1428,
     1442,
     1445,
     1441,
     1427,
     1400,
     1361,
     1316,
     1269,
     1228,
     1198,
     1207,
     1210,
     1190,
     1177,
     1172,
     1174,
     1170,
     1153,
     1127,
     1104,
     1061,
     1032,
     1020],
    'all_points_y': [963,
     899,
     841,
     787,
     738,
     700,
     663,
     638,
     621,
     619,
     643,
     672,
     720,
     765,
     800,
     860,
     896,
     942,
     990,
     1035,
     1079,
     1112,
     1129,
     1134,
     1144,
     1153,
     1166,
     1166,
     1150,
     1136,
     1129,
     1122,
     1112,
     1084,
     1037,
     989,
     963],
    'name': 'polygon'}}},
 'size': 1115004}
```

The annotation is a JSON file where each key indicates an image's all annotations.
The code to convert the balloon dataset into coco format is as below.

```python
import os.path as osp

import mmcv

from mmengine.fileio import dump, load
from mmengine.utils import track_iter_progress


def convert_balloon_to_coco(ann_file, out_file, image_prefix):
    data_infos = load(ann_file)

    annotations = []
    images = []
    obj_count = 0
    for idx, v in enumerate(track_iter_progress(data_infos.values())):
        filename = v['filename']
        img_path = osp.join(image_prefix, filename)
        height, width = mmcv.imread(img_path).shape[:2]

        images.append(
            dict(id=idx, file_name=filename, height=height, width=width))

        for _, obj in v['regions'].items():
            assert not obj['region_attributes']
            obj = obj['shape_attributes']
            px = obj['all_points_x']
            py = obj['all_points_y']
            poly = [(x + 0.5, y + 0.5) for x, y in zip(px, py)]
            poly = [p for x in poly for p in x]

            x_min, y_min, x_max, y_max = (min(px), min(py), max(px), max(py))

            data_anno = dict(
                image_id=idx,
                id=obj_count,
                category_id=0,
                bbox=[x_min, y_min, x_max - x_min, y_max - y_min],
                area=(x_max - x_min) * (y_max - y_min),
                segmentation=[poly],
                iscrowd=0)
            annotations.append(data_anno)
            obj_count += 1

    coco_format_json = dict(
        images=images,
        annotations=annotations,
        categories=[{
            'id': 0,
            'name': 'balloon'
        }])
    dump(coco_format_json, out_file)


if __name__ == '__main__':
    convert_balloon_to_coco(ann_file='data/balloon/train/via_region_data.json',
                            out_file='data/balloon/train/annotation_coco.json',
                            image_prefix='data/balloon/train')
    convert_balloon_to_coco(ann_file='data/balloon/val/via_region_data.json',
                            out_file='data/balloon/val/annotation_coco.json',
                            image_prefix='data/balloon/val')

```

Using the function above, users can successfully convert the annotation file into json format, then we can use `CocoDataset` to train and evaluate the model with `CocoMetric`.

## Prepare a config

The second step is to prepare a config thus the dataset could be successfully loaded. Assume that we want to use Mask R-CNN with FPN, the config to train the detector on balloon dataset is as below. Assume the config is under directory `configs/balloon/` and named as `mask-rcnn_r50-caffe_fpn_ms-poly-1x_balloon.py`, the config is as below.

```python
# The new config inherits a base config to highlight the necessary modification
_base_ = '../mask_rcnn/mask-rcnn_r50-caffe_fpn_ms-poly-1x_coco.py'

# We also need to change the num_classes in head to match the dataset's annotation
model = dict(
    roi_head=dict(
        bbox_head=dict(num_classes=1), mask_head=dict(num_classes=1)))

# Modify dataset related settings
data_root = 'data/balloon/'
metainfo = {
    'classes': ('balloon', ),
    'palette': [
        (220, 20, 60),
    ]
}
train_dataloader = dict(
    batch_size=1,
    dataset=dict(
        data_root=data_root,
        metainfo=metainfo,
        ann_file='train/annotation_coco.json',
        data_prefix=dict(img='train/')))
val_dataloader = dict(
    dataset=dict(
        data_root=data_root,
        metainfo=metainfo,
        ann_file='val/annotation_coco.json',
        data_prefix=dict(img='val/')))
test_dataloader = val_dataloader

# Modify metric related settings
val_evaluator = dict(ann_file=data_root + 'val/annotation_coco.json')
test_evaluator = val_evaluator

# We can use the pre-trained Mask RCNN model to obtain higher performance
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'

```

## Train a new model

To train a model with the new config, you can simply run

```shell
python tools/train.py configs/balloon/mask-rcnn_r50-caffe_fpn_ms-poly-1x_balloon.py
```

For more detailed usages, please refer to the [training guide](https://mmdetection.readthedocs.io/en/latest/user_guides/train.html#train-predefined-models-on-standard-datasets).

## Test and inference

To test the trained model, you can simply run

```shell
python tools/test.py configs/balloon/mask-rcnn_r50-caffe_fpn_ms-poly-1x_balloon.py work_dirs/mask-rcnn_r50-caffe_fpn_ms-poly-1x_balloon/epoch_12.pth
```

For more detailed usages, please refer to the [testing guide](https://mmdetection.readthedocs.io/en/latest/user_guides/test.html).