File size: 19,487 Bytes
6c9ac8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 |
# 将配置文件从 MMDetection 2.x 迁移至 3.x
MMDetection 3.x 的配置文件与 2.x 相比有较大变化,这篇文档将介绍如何将 2.x 的配置文件迁移到 3.x。
在前面的[配置文件教程](../user_guides/config.md)中,我们以 Mask R-CNN 为例介绍了 MMDetection 3.x 的配置文件结构,这里我们将按同样的结构介绍如何将 2.x 的配置文件迁移至 3.x。
## 模型配置
模型的配置与 2.x 相比并没有太大变化,对于模型的 backbone,neck,head,以及 train_cfg 和 test_cfg,它们的参数与 2.x 版本的参数保持一致。
不同的是,我们在 3.x 版本的模型中新增了 `DataPreprocessor` 模块。
`DataPreprocessor` 模块的配置位于 `model.data_preprocessor` 中,它用于对输入数据进行预处理,例如对输入图像进行归一化,将不同大小的图片进行 padding 从而组成 batch,将图像从内存中读取到显存中等。这部分配置取代了原本存在于 train_pipeline 和 test_pipeline 中的 `Normalize` 和 `Pad`。
<table class="docutils">
<tr>
<td>原配置</td>
<td>
```python
# 图像归一化参数
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
pipeline=[
...,
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32), # 图像 padding 到 32 的倍数
...
]
```
</td>
<tr>
<td>新配置</td>
<td>
```python
model = dict(
data_preprocessor=dict(
type='DetDataPreprocessor',
# 图像归一化参数
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
# 图像 padding 参数
pad_mask=True, # 在实例分割中,需要将 mask 也进行 padding
pad_size_divisor=32) # 图像 padding 到 32 的倍数
)
```
</td>
</tr>
</table>
## 数据集和评测器配置
数据集和评测部分的配置相比 2.x 版本有较大的变化。我们将从 Dataloader 和 Dataset,Data transform pipeline,以及评测器配置三个方面介绍如何将 2.x 版本的配置迁移到 3.x 版本。
### Dataloader 和 Dataset 配置
在新版本中,我们将数据加载的设置与 PyTorch 官方的 DataLoader 保持一致,这样可以使用户更容易理解和上手。
我们将训练、验证和测试的数据加载设置分别放在 `train_dataloader`,`val_dataloader` 和 `test_dataloader` 中,用户可以分别对这些 dataloader 设置不同的参数,其输入参数与 [PyTorch 的 Dataloader](https://pytorch.org/docs/stable/data.html?highlight=dataloader#torch.utils.data.DataLoader) 所需要的参数基本一致。
通过这种方式,我们将 2.x 版本中不可配置的 `sampler`,`batch_sampler`,`persistent_workers` 等参数都放到了配置文件中,使得用户可以更加灵活地设置数据加载的参数。
用户可以通过 `train_dataloader.dataset`,`val_dataloader.dataset` 和 `test_dataloader.dataset` 来设置数据集的配置,它们分别对应 2.x 版本中的 `data.train`,`data.val` 和 `data.test`。
<table class="docutils">
<tr>
<td>原配置</td>
<td>
```python
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
```
</td>
<tr>
<td>新配置</td>
<td>
```python
train_dataloader = dict(
batch_size=2,
num_workers=2,
persistent_workers=True, # 避免每次迭代后 dataloader 重新创建子进程
sampler=dict(type='DefaultSampler', shuffle=True), # 默认的 sampler,同时支持分布式训练和非分布式训练
batch_sampler=dict(type='AspectRatioBatchSampler'), # 默认的 batch_sampler,用于保证 batch 中的图片具有相似的长宽比,从而可以更好地利用显存
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline))
# 在 3.x 版本中可以独立配置验证和测试的 dataloader
val_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_val2017.json',
data_prefix=dict(img='val2017/'),
test_mode=True,
pipeline=test_pipeline))
test_dataloader = val_dataloader # 测试 dataloader 的配置与验证 dataloader 的配置相同,这里省略
```
</td>
</tr>
</table>
### Data transform pipeline 配置
上文中提到,我们将图像 normalize 和 padding 的配置从 `train_pipeline` 和 `test_pipeline` 中独立出来,放到了 `model.data_preprocessor` 中,因此在 3.x 版本的 pipeline 中,我们不再需要 `Normalize` 和 `Pad` 这两个 transform。
同时,我们也对负责数据格式打包的 transform 进行了重构,将 `Collect` 和 `DefaultFormatBundle` 这两个 transform 合并为了 `PackDetInputs`,它负责将 data pipeline 中的数据打包成模型的输入格式,关于输入格式的转换,详见[数据流文档](../advanced_guides/data_flow.md)。
下面以 Mask R-CNN 1x 的 train_pipeline 为例,介绍如何将 2.x 版本的配置迁移到 3.x 版本:
<table class="docutils">
<tr>
<td>原配置</td>
<td>
```python
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
```
</td>
<tr>
<td>新配置</td>
<td>
```python
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
```
</td>
</tr>
</table>
对于 test_pipeline,除了将 `Normalize` 和 `Pad` 这两个 transform 去掉之外,我们也将测试时的数据增强(TTA)与普通的测试流程分开,移除了 `MultiScaleFlipAug`。关于新版的 TTA 如何使用,详见[TTA 文档](../advanced_guides/tta.md)。
下面同样以 Mask R-CNN 1x 的 test_pipeline 为例,介绍如何将 2.x 版本的配置迁移到 3.x 版本:
<table class="docutils">
<tr>
<td>原配置</td>
<td>
```python
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
```
</td>
<tr>
<td>新配置</td>
<td>
```python
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
```
</td>
</tr>
</table>
除此之外,我们还对一些数据增强进行了重构,下表列出了 2.x 版本中的 transform 与 3.x 版本中的 transform 的对应关系:
<table class="docutils">
<thead>
<tr>
<th>名称</th>
<th>原配置</th>
<th>新配置</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resize</td>
<td>
```python
dict(type='Resize',
img_scale=(1333, 800),
keep_ratio=True)
```
</td>
<td>
```python
dict(type='Resize',
scale=(1333, 800),
keep_ratio=True)
```
</td>
</tr>
<tr>
<td>RandomResize</td>
<td>
```python
dict(
type='Resize',
img_scale=[
(1333, 640), (1333, 800)],
multiscale_mode='range',
keep_ratio=True)
```
</td>
<td>
```python
dict(
type='RandomResize',
scale=[
(1333, 640), (1333, 800)],
keep_ratio=True)
```
</td>
</tr>
<tr>
<td>RandomChoiceResize</td>
<td>
```python
dict(
type='Resize',
img_scale=[
(1333, 640), (1333, 672),
(1333, 704), (1333, 736),
(1333, 768), (1333, 800)],
multiscale_mode='value',
keep_ratio=True)
```
</td>
<td>
```python
dict(
type='RandomChoiceResize',
scales=[
(1333, 640), (1333, 672),
(1333, 704), (1333, 736),
(1333, 768), (1333, 800)],
keep_ratio=True)
```
</td>
</tr>
<tr>
<td>RandomFlip</td>
<td>
```python
dict(type='RandomFlip',
flip_ratio=0.5)
```
</td>
<td>
```python
dict(type='RandomFlip',
prob=0.5)
```
</td>
</tr>
</tbody>
</table>
### 评测器配置
在 3.x 版本中,模型精度评测不再与数据集绑定,而是通过评测器(Evaluator)来完成。
评测器配置分为 val_evaluator 和 test_evaluator 两部分,其中 val_evaluator 用于验证集评测,test_evaluator 用于测试集评测,对应 2.x 版本中的 evaluation 字段。
下表列出了 2.x 版本与 3.x 版本中的评测器的对应关系:
<table class="docutils">
<thead>
<tr>
<th>评测指标名称</th>
<th>原配置</th>
<th>新配置</th>
</tr>
</thead>
<tbody>
<tr>
<td>COCO</td>
<td>
```python
data = dict(
val=dict(
type='CocoDataset',
ann_file=data_root + 'annotations/instances_val2017.json'))
evaluation = dict(metric=['bbox', 'segm'])
```
</td>
<td>
```python
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'annotations/instances_val2017.json',
metric=['bbox', 'segm'],
format_only=False)
```
</td>
</tr>
<tr>
<td>Pascal VOC</td>
<td>
```python
data = dict(
val=dict(
type=dataset_type,
ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt'))
evaluation = dict(metric='mAP')
```
</td>
<td>
```python
val_evaluator = dict(
type='VOCMetric',
metric='mAP',
eval_mode='11points')
```
</td>
</tr>
<tr>
<td>OpenImages</td>
<td>
```python
data = dict(
val=dict(
type='OpenImagesDataset',
ann_file=data_root + 'annotations/validation-annotations-bbox.csv',
img_prefix=data_root + 'OpenImages/validation/',
label_file=data_root + 'annotations/class-descriptions-boxable.csv',
hierarchy_file=data_root +
'annotations/bbox_labels_600_hierarchy.json',
meta_file=data_root + 'annotations/validation-image-metas.pkl',
image_level_ann_file=data_root +
'annotations/validation-annotations-human-imagelabels-boxable.csv'))
evaluation = dict(interval=1, metric='mAP')
```
</td>
<td>
```python
val_evaluator = dict(
type='OpenImagesMetric',
iou_thrs=0.5,
ioa_thrs=0.5,
use_group_of=True,
get_supercategory=True)
```
</td>
</tr>
<tr>
<td>CityScapes</td>
<td>
```python
data = dict(
val=dict(
type='CityScapesDataset',
ann_file=data_root +
'annotations/instancesonly_filtered_gtFine_val.json',
img_prefix=data_root + 'leftImg8bit/val/',
pipeline=test_pipeline))
evaluation = dict(metric=['bbox', 'segm'])
```
</td>
<td>
```python
val_evaluator = [
dict(
type='CocoMetric',
ann_file=data_root +
'annotations/instancesonly_filtered_gtFine_val.json',
metric=['bbox', 'segm']),
dict(
type='CityScapesMetric',
ann_file=data_root +
'annotations/instancesonly_filtered_gtFine_val.json',
seg_prefix=data_root + '/gtFine/val',
outfile_prefix='./work_dirs/cityscapes_metric/instance')
]
```
</td>
</tr>
</tbody>
</table>
## 训练和测试的配置
<table class="docutils">
<tr>
<td>原配置</td>
<td>
```python
runner = dict(
type='EpochBasedRunner', # 训练循环的类型
max_epochs=12) # 最大训练轮次
evaluation = dict(interval=2) # 验证间隔。每 2 个 epoch 验证一次
```
</td>
<tr>
<td>新配置</td>
<td>
```python
train_cfg = dict(
type='EpochBasedTrainLoop', # 训练循环的类型,请参考 https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py
max_epochs=12, # 最大训练轮次
val_interval=2) # 验证间隔。每 2 个 epoch 验证一次
val_cfg = dict(type='ValLoop') # 验证循环的类型
test_cfg = dict(type='TestLoop') # 测试循环的类型
```
</td>
</tr>
</table>
## 优化相关配置
优化器以及梯度裁剪的配置都移至 optim_wrapper 字段中。下表列出了 2.x 版本与 3.x 版本中的优化器配置的对应关系:
<table class="docutils">
<tr>
<td>原配置</td>
<td>
```python
optimizer = dict(
type='SGD', # 随机梯度下降优化器
lr=0.02, # 基础学习率
momentum=0.9, # 带动量的随机梯度下降
weight_decay=0.0001) # 权重衰减
optimizer_config = dict(grad_clip=None) # 梯度裁剪的配置,设置为 None 关闭梯度裁剪
```
</td>
<tr>
<td>新配置</td>
<td>
```python
optim_wrapper = dict( # 优化器封装的配置
type='OptimWrapper', # 优化器封装的类型。可以切换至 AmpOptimWrapper 来启用混合精度训练
optimizer=dict( # 优化器配置。支持 PyTorch 的各种优化器。请参考 https://pytorch.org/docs/stable/optim.html#algorithms
type='SGD', # 随机梯度下降优化器
lr=0.02, # 基础学习率
momentum=0.9, # 带动量的随机梯度下降
weight_decay=0.0001), # 权重衰减
clip_grad=None, # 梯度裁剪的配置,设置为 None 关闭梯度裁剪。使用方法请见 https://mmengine.readthedocs.io/en/latest/tutorials/optimizer.html
)
```
</td>
</tr>
</table>
学习率的配置也从 lr_config 字段中移至 param_scheduler 字段中。param_scheduler 的配置更贴近 PyTorch 的学习率调整策略,更加灵活。下表列出了 2.x 版本与 3.x 版本中的学习率配置的对应关系:
<table class="docutils">
<tr>
<td>原配置</td>
<td>
```python
lr_config = dict(
policy='step', # 在训练过程中使用 multi step 学习率策略
warmup='linear', # 使用线性学习率预热
warmup_iters=500, # 到第 500 个 iteration 结束预热
warmup_ratio=0.001, # 学习率预热的系数
step=[8, 11], # 在哪几个 epoch 进行学习率衰减
gamma=0.1) # 学习率衰减系数
```
</td>
<tr>
<td>新配置</td>
<td>
```python
param_scheduler = [
dict(
type='LinearLR', # 使用线性学习率预热
start_factor=0.001, # 学习率预热的系数
by_epoch=False, # 按 iteration 更新预热学习率
begin=0, # 从第一个 iteration 开始
end=500), # 到第 500 个 iteration 结束
dict(
type='MultiStepLR', # 在训练过程中使用 multi step 学习率策略
by_epoch=True, # 按 epoch 更新学习率
begin=0, # 从第一个 epoch 开始
end=12, # 到第 12 个 epoch 结束
milestones=[8, 11], # 在哪几个 epoch 进行学习率衰减
gamma=0.1) # 学习率衰减系数
]
```
</td>
</tr>
</table>
关于其他的学习率调整策略的迁移,请参考 MMEngine 的[学习率迁移文档](https://mmengine.readthedocs.io/zh_CN/latest/migration/param_scheduler.html)。
## 其他配置的迁移
### 保存 checkpoint 的配置
<table class="docutils">
<thead>
<tr>
<th>功能</th>
<th>原配置</th>
<th>新配置</th>
</tr>
</thead>
<tbody>
<tr>
<td>设置保存间隔</td>
<td>
```python
checkpoint_config = dict(
interval=1)
```
</td>
<td>
```python
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
interval=1))
```
</td>
</tr>
<tr>
<td>保存最佳模型</td>
<td>
```python
evaluation = dict(
save_best='auto')
```
</td>
<td>
```python
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
save_best='auto'))
```
</td>
</tr>
<tr>
<td>只保留最新的几个模型</td>
<td>
```python
checkpoint_config = dict(
max_keep_ckpts=3)
```
</td>
<td>
```python
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
max_keep_ckpts=3))
```
</td>
</tr>
</tbody>
</table>
### 日志的配置
3.x 版本中,日志的打印和可视化由 MMEngine 中的 logger 和 visualizer 分别完成。下表列出了 2.x 版本与 3.x 版本中的日志配置的对应关系:
<table class="docutils">
<thead>
<tr>
<th>功能</th>
<th>原配置</th>
<th>新配置</th>
</tr>
</thead>
<tbody>
<tr>
<td>设置日志打印间隔</td>
<td>
```python
log_config = dict(
interval=50)
```
</td>
<td>
```python
default_hooks = dict(
logger=dict(
type='LoggerHook',
interval=50))
# 可选: 配置日志打印数值的平滑窗口大小
log_processor = dict(
type='LogProcessor',
window_size=50)
```
</td>
</tr>
<tr>
<td>使用 TensorBoard 或 WandB 可视化日志</td>
<td>
```python
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook'),
dict(type='MMDetWandbHook',
init_kwargs={
'project': 'mmdetection',
'group': 'maskrcnn-r50-fpn-1x-coco'
},
interval=50,
log_checkpoint=True,
log_checkpoint_metadata=True,
num_eval_images=100)
])
```
</td>
<td>
```python
vis_backends = [
dict(type='LocalVisBackend'),
dict(type='TensorboardVisBackend'),
dict(type='WandbVisBackend',
init_kwargs={
'project': 'mmdetection',
'group': 'maskrcnn-r50-fpn-1x-coco'
})
]
visualizer = dict(
type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer')
```
</td>
</tr>
</tbody>
</table>
关于可视化相关的教程,请参考 MMDetection 的[可视化教程](../user_guides/visualization.md)。
### Runtime 的配置
3.x 版本中 runtime 的配置字段有所调整,具体的对应关系如下:
<table class="docutils">
<thead>
<tr>
<th>原配置</th>
<th>新配置</th>
</tr>
</thead>
<tbody>
<tr>
<td>
```python
cudnn_benchmark = False
opencv_num_threads = 0
mp_start_method = 'fork'
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
```
</td>
<td>
```python
env_cfg = dict(
cudnn_benchmark=False,
mp_cfg=dict(mp_start_method='fork',
opencv_num_threads=0),
dist_cfg=dict(backend='nccl'))
log_level = 'INFO'
load_from = None
resume = False
```
</td>
</tr>
</tbody>
</table>
|