File size: 6,462 Bytes
6c9ac8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# 模型部署

[MMDeploy](https://github.com/open-mmlab/mmdeploy) 是 OpenMMLab 的部署仓库,负责包括 MMClassification、MMDetection 等在内的各算法库的部署工作。
你可以从[这里](https://mmdeploy.readthedocs.io/zh_CN/1.x/04-supported-codebases/mmdet.html)获取 MMDeploy 对 MMDetection 部署支持的最新文档。

本文的结构如下:

- [安装](#安装)
- [模型转换](#模型转换)
- [模型规范](#模型规范)
- [模型推理](#模型推理)
  - [后端模型推理](#后端模型推理)
  - [SDK 模型推理](#sdk-模型推理)
- [模型支持列表](#模型支持列表)
-

## 安装

请参考[此处](https://mmdetection.readthedocs.io/en/latest/get_started.html)安装 mmdet。然后,按照[说明](https://mmdeploy.readthedocs.io/zh_CN/1.x/get_started.html#mmdeploy)安装 mmdeploy。

```{note}
如果安装的是 mmdeploy 预编译包,那么也请通过 'git clone https://github.com/open-mmlab/mmdeploy.git --depth=1' 下载 mmdeploy 源码。因为它包含了部署时要用到的配置文件
```

## 模型转换

假设在安装步骤中,mmdetection 和 mmdeploy 代码库在同级目录下,并且当前的工作目录为 mmdetection 的根目录,那么以 [Faster R-CNN](https://github.com/open-mmlab/mmdetection/blob/main/configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py) 模型为例,你可以从[此处](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth)下载对应的 checkpoint,并使用以下代码将之转换为 onnx 模型:

```python
from mmdeploy.apis import torch2onnx
from mmdeploy.backend.sdk.export_info import export2SDK

img = 'demo/demo.jpg'
work_dir = 'mmdeploy_models/mmdet/onnx'
save_file = 'end2end.onnx'
deploy_cfg = '../mmdeploy/configs/mmdet/detection/detection_onnxruntime_dynamic.py'
model_cfg = 'configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py'
model_checkpoint = 'faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
device = 'cpu'

# 1. convert model to onnx
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg,
           model_checkpoint, device)

# 2. extract pipeline info for inference by MMDeploy SDK
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint,
           device=device)
```

转换的关键之一是使用正确的配置文件。项目中已内置了各后端部署[配置文件](https://github.com/open-mmlab/mmdeploy/tree/1.x/configs/mmdet)。
文件的命名模式是:

```
{task}/{task}_{backend}-{precision}_{static | dynamic}_{shape}.py
```

其中:

- **{task}:** mmdet 中的任务

  mmdet 任务有2种:物体检测(detection)、实例分割(instance-seg)。例如,`RetinaNet``Faster R-CNN``DETR`等属于前者。`Mask R-CNN``SOLO`等属于后者。更多`模型-任务`的划分,请参考章节[模型支持列表](#模型支持列表)。

  **请务必**使用 `detection/detection_*.py` 转换检测模型,使用 `instance-seg/instance-seg_*.py` 转换实例分割模型。

- **{backend}:** 推理后端名称。比如,onnxruntime、tensorrt、pplnn、ncnn、openvino、coreml 等等

- **{precision}:** 推理精度。比如,fp16、int8。不填表示 fp32

- **{static | dynamic}:** 动态、静态 shape

- **{shape}:** 模型输入的 shape 或者 shape 范围

在上例中,你也可以把 `Faster R-CNN` 转为其他后端模型。比如使用`detection_tensorrt-fp16_dynamic-320x320-1344x1344.py`,把模型转为 tensorrt-fp16 模型。

```{tip}
当转 tensorrt 模型时, --device 需要被设置为 "cuda"
```

## 模型规范

在使用转换后的模型进行推理之前,有必要了解转换结果的结构。 它存放在 `--work-dir` 指定的路路径下。

上例中的`mmdeploy_models/mmdet/onnx`,结构如下:

```
mmdeploy_models/mmdet/onnx
├── deploy.json
├── detail.json
├── end2end.onnx
└── pipeline.json
```

重要的是:

- **end2end.onnx**: 推理引擎文件。可用 ONNX Runtime 推理
- ***xxx*.json**:  mmdeploy SDK 推理所需的 meta 信息

整个文件夹被定义为**mmdeploy SDK model**。换言之,**mmdeploy SDK model**既包括推理引擎,也包括推理 meta 信息。

## 模型推理

## 后端模型推理

以上述模型转换后的 `end2end.onnx` 为例,你可以使用如下代码进行推理:

```python
from mmdeploy.apis.utils import build_task_processor
from mmdeploy.utils import get_input_shape, load_config
import torch

deploy_cfg = '../mmdeploy/configs/mmdet/detection/detection_onnxruntime_dynamic.py'
model_cfg = 'configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py'
device = 'cpu'
backend_model = ['mmdeploy_models/mmdet/onnx/end2end.onnx']
image = 'demo/demo.jpg'

# read deploy_cfg and model_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)

# build task and backend model
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
model = task_processor.build_backend_model(backend_model)

# process input image
input_shape = get_input_shape(deploy_cfg)
model_inputs, _ = task_processor.create_input(image, input_shape)

# do model inference
with torch.no_grad():
    result = model.test_step(model_inputs)

# visualize results
task_processor.visualize(
    image=image,
    model=model,
    result=result[0],
    window_name='visualize',
    output_file='output_detection.png')
```

## SDK 模型推理

你也可以参考如下代码,对 SDK model 进行推理:

```python
from mmdeploy_python import Detector
import cv2

img = cv2.imread('demo/demo.jpg')

# create a detector
detector = Detector(model_path='mmdeploy_models/mmdet/onnx',
                    device_name='cpu', device_id=0)
# perform inference
bboxes, labels, masks = detector(img)

# visualize inference result
indices = [i for i in range(len(bboxes))]
for index, bbox, label_id in zip(indices, bboxes, labels):
    [left, top, right, bottom], score = bbox[0:4].astype(int), bbox[4]
    if score < 0.3:
        continue

    cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0))

cv2.imwrite('output_detection.png', img)
```

除了python API,mmdeploy SDK 还提供了诸如 C、C++、C#、Java等多语言接口。
你可以参考[样例](https://github.com/open-mmlab/mmdeploy/tree/1.x/demo)学习其他语言接口的使用方法。

## 模型支持列表

请参考[这里](https://mmdeploy.readthedocs.io/zh_CN/1.x/04-supported-codebases/mmdet.html#id6)