File size: 13,673 Bytes
6c9ac8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Sequence, Tuple

import torch
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.models.roi_heads import CascadeRoIHead
from mmdet.models.task_modules.samplers import SamplingResult
from mmdet.models.test_time_augs import merge_aug_masks
from mmdet.models.utils.misc import empty_instances
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox2roi, get_box_tensor
from mmdet.utils import ConfigType, InstanceList, MultiConfig


@MODELS.register_module(force=True)  # avoid bug
class DeticRoIHead(CascadeRoIHead):

    def init_mask_head(self, mask_roi_extractor: MultiConfig,
                       mask_head: MultiConfig) -> None:
        """Initialize mask head and mask roi extractor.

        Args:
            mask_head (dict): Config of mask in mask head.
            mask_roi_extractor (:obj:`ConfigDict`, dict or list):
                Config of mask roi extractor.
        """
        self.mask_head = MODELS.build(mask_head)

        if mask_roi_extractor is not None:
            self.share_roi_extractor = False
            self.mask_roi_extractor = MODELS.build(mask_roi_extractor)
        else:
            self.share_roi_extractor = True
            self.mask_roi_extractor = self.bbox_roi_extractor

    def _refine_roi(self, x: Tuple[Tensor], rois: Tensor,
                    batch_img_metas: List[dict],
                    num_proposals_per_img: Sequence[int], **kwargs) -> tuple:
        """Multi-stage refinement of RoI.

        Args:
            x (tuple[Tensor]): List of multi-level img features.
            rois (Tensor): shape (n, 5), [batch_ind, x1, y1, x2, y2]
            batch_img_metas (list[dict]): List of image information.
            num_proposals_per_img (sequence[int]): number of proposals
                in each image.

        Returns:
            tuple:

               - rois (Tensor): Refined RoI.
               - cls_scores (list[Tensor]): Average predicted
                   cls score per image.
               - bbox_preds (list[Tensor]): Bbox branch predictions
                   for the last stage of per image.
        """
        # "ms" in variable names means multi-stage
        ms_scores = []
        for stage in range(self.num_stages):
            bbox_results = self._bbox_forward(
                stage=stage, x=x, rois=rois, **kwargs)

            # split batch bbox prediction back to each image
            cls_scores = bbox_results['cls_score'].sigmoid()
            bbox_preds = bbox_results['bbox_pred']

            rois = rois.split(num_proposals_per_img, 0)
            cls_scores = cls_scores.split(num_proposals_per_img, 0)
            ms_scores.append(cls_scores)
            bbox_preds = bbox_preds.split(num_proposals_per_img, 0)

            if stage < self.num_stages - 1:
                bbox_head = self.bbox_head[stage]
                refine_rois_list = []
                for i in range(len(batch_img_metas)):
                    if rois[i].shape[0] > 0:
                        bbox_label = cls_scores[i][:, :-1].argmax(dim=1)
                        # Refactor `bbox_head.regress_by_class` to only accept
                        # box tensor without img_idx concatenated.
                        refined_bboxes = bbox_head.regress_by_class(
                            rois[i][:, 1:], bbox_label, bbox_preds[i],
                            batch_img_metas[i])
                        refined_bboxes = get_box_tensor(refined_bboxes)
                        refined_rois = torch.cat(
                            [rois[i][:, [0]], refined_bboxes], dim=1)
                        refine_rois_list.append(refined_rois)
                rois = torch.cat(refine_rois_list)
        # ms_scores aligned
        # average scores of each image by stages
        cls_scores = [
            sum([score[i] for score in ms_scores]) / float(len(ms_scores))
            for i in range(len(batch_img_metas))
        ]  # aligned
        return rois, cls_scores, bbox_preds

    def _bbox_forward(self, stage: int, x: Tuple[Tensor],
                      rois: Tensor) -> dict:
        """Box head forward function used in both training and testing.

        Args:
            stage (int): The current stage in Cascade RoI Head.
            x (tuple[Tensor]): List of multi-level img features.
            rois (Tensor): RoIs with the shape (n, 5) where the first
                column indicates batch id of each RoI.

        Returns:
             dict[str, Tensor]: Usually returns a dictionary with keys:

                - `cls_score` (Tensor): Classification scores.
                - `bbox_pred` (Tensor): Box energies / deltas.
                - `bbox_feats` (Tensor): Extract bbox RoI features.
        """
        bbox_roi_extractor = self.bbox_roi_extractor[stage]
        bbox_head = self.bbox_head[stage]
        bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs],
                                        rois)
        # do not support caffe_c4 model anymore
        cls_score, bbox_pred = bbox_head(bbox_feats)

        bbox_results = dict(
            cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats)
        return bbox_results

    def predict_bbox(self,
                     x: Tuple[Tensor],
                     batch_img_metas: List[dict],
                     rpn_results_list: InstanceList,
                     rcnn_test_cfg: ConfigType,
                     rescale: bool = False,
                     **kwargs) -> InstanceList:
        """Perform forward propagation of the bbox head and predict detection
        results on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            batch_img_metas (list[dict]): List of image information.
            rpn_results_list (list[:obj:`InstanceData`]): List of region
                proposals.
            rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Detection results of each image
            after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        proposals = [res.bboxes for res in rpn_results_list]
        proposal_scores = [res.scores for res in rpn_results_list]
        num_proposals_per_img = tuple(len(p) for p in proposals)
        rois = bbox2roi(proposals)

        if rois.shape[0] == 0:
            return empty_instances(
                batch_img_metas,
                rois.device,
                task_type='bbox',
                box_type=self.bbox_head[-1].predict_box_type,
                num_classes=self.bbox_head[-1].num_classes,
                score_per_cls=rcnn_test_cfg is None)
        # rois aligned
        rois, cls_scores, bbox_preds = self._refine_roi(
            x=x,
            rois=rois,
            batch_img_metas=batch_img_metas,
            num_proposals_per_img=num_proposals_per_img,
            **kwargs)

        # score reweighting in centernet2
        cls_scores = [(s * ps[:, None])**0.5
                      for s, ps in zip(cls_scores, proposal_scores)]
        cls_scores = [
            s * (s == s[:, :-1].max(dim=1)[0][:, None]).float()
            for s in cls_scores
        ]

        # fast_rcnn_inference
        results_list = self.bbox_head[-1].predict_by_feat(
            rois=rois,
            cls_scores=cls_scores,
            bbox_preds=bbox_preds,
            batch_img_metas=batch_img_metas,
            rescale=rescale,
            rcnn_test_cfg=rcnn_test_cfg)
        return results_list

    def _mask_forward(self, x: Tuple[Tensor], rois: Tensor) -> dict:
        """Mask head forward function used in both training and testing.

        Args:
            stage (int): The current stage in Cascade RoI Head.
            x (tuple[Tensor]): Tuple of multi-level img features.
            rois (Tensor): RoIs with the shape (n, 5) where the first
                column indicates batch id of each RoI.

        Returns:
            dict: Usually returns a dictionary with keys:

                - `mask_preds` (Tensor): Mask prediction.
        """
        mask_feats = self.mask_roi_extractor(
            x[:self.mask_roi_extractor.num_inputs], rois)
        # do not support caffe_c4 model anymore
        mask_preds = self.mask_head(mask_feats)

        mask_results = dict(mask_preds=mask_preds)
        return mask_results

    def mask_loss(self, x, sampling_results: List[SamplingResult],
                  batch_gt_instances: InstanceList) -> dict:
        """Run forward function and calculate loss for mask head in training.

        Args:
            x (tuple[Tensor]): Tuple of multi-level img features.
            sampling_results (list["obj:`SamplingResult`]): Sampling results.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes``, ``labels``, and
                ``masks`` attributes.

        Returns:
            dict: Usually returns a dictionary with keys:

                - `mask_preds` (Tensor): Mask prediction.
                - `loss_mask` (dict): A dictionary of mask loss components.
        """
        pos_rois = bbox2roi([res.pos_priors for res in sampling_results])
        mask_results = self._mask_forward(x, pos_rois)

        mask_loss_and_target = self.mask_head.loss_and_target(
            mask_preds=mask_results['mask_preds'],
            sampling_results=sampling_results,
            batch_gt_instances=batch_gt_instances,
            rcnn_train_cfg=self.train_cfg[-1])
        mask_results.update(mask_loss_and_target)

        return mask_results

    def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
             batch_data_samples: SampleList) -> dict:
        """Perform forward propagation and loss calculation of the detection
        roi on the features of the upstream network.

        Args:
            x (tuple[Tensor]): List of multi-level img features.
            rpn_results_list (list[:obj:`InstanceData`]): List of region
                proposals.
            batch_data_samples (list[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.

        Returns:
            dict[str, Tensor]: A dictionary of loss components
        """
        raise NotImplementedError

    def predict_mask(self,
                     x: Tuple[Tensor],
                     batch_img_metas: List[dict],
                     results_list: List[InstanceData],
                     rescale: bool = False) -> List[InstanceData]:
        """Perform forward propagation of the mask head and predict detection
        results on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            batch_img_metas (list[dict]): List of image information.
            results_list (list[:obj:`InstanceData`]): Detection results of
                each image.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Detection results of each image
            after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
                - masks (Tensor): Has a shape (num_instances, H, W).
        """
        bboxes = [res.bboxes for res in results_list]
        mask_rois = bbox2roi(bboxes)
        if mask_rois.shape[0] == 0:
            results_list = empty_instances(
                batch_img_metas,
                mask_rois.device,
                task_type='mask',
                instance_results=results_list,
                mask_thr_binary=self.test_cfg.mask_thr_binary)
            return results_list

        num_mask_rois_per_img = [len(res) for res in results_list]
        aug_masks = []
        mask_results = self._mask_forward(x, mask_rois)
        mask_preds = mask_results['mask_preds']
        # split batch mask prediction back to each image
        mask_preds = mask_preds.split(num_mask_rois_per_img, 0)
        aug_masks.append([m.sigmoid().detach() for m in mask_preds])

        merged_masks = []
        for i in range(len(batch_img_metas)):
            aug_mask = [mask[i] for mask in aug_masks]
            merged_mask = merge_aug_masks(aug_mask, batch_img_metas[i])
            merged_masks.append(merged_mask)
        results_list = self.mask_head.predict_by_feat(
            mask_preds=merged_masks,
            results_list=results_list,
            batch_img_metas=batch_img_metas,
            rcnn_test_cfg=self.test_cfg,
            rescale=rescale,
            activate_map=True)
        return results_list