File size: 43,032 Bytes
6c9ac8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 |
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Modified from https://github.com/ShoufaChen/DiffusionDet/blob/main/diffusiondet/detector.py # noqa
# Modified from https://github.com/ShoufaChen/DiffusionDet/blob/main/diffusiondet/head.py # noqa
# This work is licensed under the CC-BY-NC 4.0 License.
# Users should be careful about adopting these features in any commercial matters. # noqa
# For more details, please refer to https://github.com/ShoufaChen/DiffusionDet/blob/main/LICENSE # noqa
import copy
import math
import random
import warnings
from typing import Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_activation_layer
from mmcv.ops import batched_nms
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import SampleList
from mmdet.structures.bbox import (bbox2roi, bbox_cxcywh_to_xyxy,
bbox_xyxy_to_cxcywh, get_box_wh,
scale_boxes)
from mmdet.utils import InstanceList
_DEFAULT_SCALE_CLAMP = math.log(100000.0 / 16)
def cosine_beta_schedule(timesteps, s=0.008):
"""Cosine schedule as proposed in
https://openreview.net/forum?id=-NEXDKk8gZ."""
steps = timesteps + 1
x = torch.linspace(0, timesteps, steps, dtype=torch.float64)
alphas_cumprod = torch.cos(
((x / timesteps) + s) / (1 + s) * math.pi * 0.5)**2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return torch.clip(betas, 0, 0.999)
def extract(a, t, x_shape):
"""extract the appropriate t index for a batch of indices."""
batch_size = t.shape[0]
out = a.gather(-1, t)
return out.reshape(batch_size, *((1, ) * (len(x_shape) - 1)))
class SinusoidalPositionEmbeddings(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, time):
device = time.device
half_dim = self.dim // 2
embeddings = math.log(10000) / (half_dim - 1)
embeddings = torch.exp(
torch.arange(half_dim, device=device) * -embeddings)
embeddings = time[:, None] * embeddings[None, :]
embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)
return embeddings
@MODELS.register_module()
class DynamicDiffusionDetHead(nn.Module):
def __init__(self,
num_classes=80,
feat_channels=256,
num_proposals=500,
num_heads=6,
prior_prob=0.01,
snr_scale=2.0,
timesteps=1000,
sampling_timesteps=1,
self_condition=False,
box_renewal=True,
use_ensemble=True,
deep_supervision=True,
ddim_sampling_eta=1.0,
criterion=dict(
type='DiffusionDetCriterion',
num_classes=80,
assigner=dict(
type='DiffusionDetMatcher',
match_costs=[
dict(
type='FocalLossCost',
alpha=2.0,
gamma=0.25,
weight=2.0),
dict(
type='BBoxL1Cost',
weight=5.0,
box_format='xyxy'),
dict(type='IoUCost', iou_mode='giou', weight=2.0)
],
center_radius=2.5,
candidate_topk=5),
),
single_head=dict(
type='DiffusionDetHead',
num_cls_convs=1,
num_reg_convs=3,
dim_feedforward=2048,
num_heads=8,
dropout=0.0,
act_cfg=dict(type='ReLU'),
dynamic_conv=dict(dynamic_dim=64, dynamic_num=2)),
roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(
type='RoIAlign', output_size=7, sampling_ratio=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
test_cfg=None,
**kwargs) -> None:
super().__init__()
self.roi_extractor = MODELS.build(roi_extractor)
self.num_classes = num_classes
self.num_classes = num_classes
self.feat_channels = feat_channels
self.num_proposals = num_proposals
self.num_heads = num_heads
# Build Diffusion
assert isinstance(timesteps, int), 'The type of `timesteps` should ' \
f'be int but got {type(timesteps)}'
assert sampling_timesteps <= timesteps
self.timesteps = timesteps
self.sampling_timesteps = sampling_timesteps
self.snr_scale = snr_scale
self.ddim_sampling = self.sampling_timesteps < self.timesteps
self.ddim_sampling_eta = ddim_sampling_eta
self.self_condition = self_condition
self.box_renewal = box_renewal
self.use_ensemble = use_ensemble
self._build_diffusion()
# Build assigner
assert criterion.get('assigner', None) is not None
assigner = TASK_UTILS.build(criterion.get('assigner'))
# Init parameters.
self.use_focal_loss = assigner.use_focal_loss
self.use_fed_loss = assigner.use_fed_loss
# build criterion
criterion.update(deep_supervision=deep_supervision)
self.criterion = TASK_UTILS.build(criterion)
# Build Dynamic Head.
single_head_ = single_head.copy()
single_head_num_classes = single_head_.get('num_classes', None)
if single_head_num_classes is None:
single_head_.update(num_classes=num_classes)
else:
if single_head_num_classes != num_classes:
warnings.warn(
'The `num_classes` of `DynamicDiffusionDetHead` and '
'`SingleDiffusionDetHead` should be same, changing '
f'`single_head.num_classes` to {num_classes}')
single_head_.update(num_classes=num_classes)
single_head_feat_channels = single_head_.get('feat_channels', None)
if single_head_feat_channels is None:
single_head_.update(feat_channels=feat_channels)
else:
if single_head_feat_channels != feat_channels:
warnings.warn(
'The `feat_channels` of `DynamicDiffusionDetHead` and '
'`SingleDiffusionDetHead` should be same, changing '
f'`single_head.feat_channels` to {feat_channels}')
single_head_.update(feat_channels=feat_channels)
default_pooler_resolution = roi_extractor['roi_layer'].get(
'output_size')
assert default_pooler_resolution is not None
single_head_pooler_resolution = single_head_.get('pooler_resolution')
if single_head_pooler_resolution is None:
single_head_.update(pooler_resolution=default_pooler_resolution)
else:
if single_head_pooler_resolution != default_pooler_resolution:
warnings.warn(
'The `pooler_resolution` of `DynamicDiffusionDetHead` '
'and `SingleDiffusionDetHead` should be same, changing '
f'`single_head.pooler_resolution` to {num_classes}')
single_head_.update(
pooler_resolution=default_pooler_resolution)
single_head_.update(
use_focal_loss=self.use_focal_loss, use_fed_loss=self.use_fed_loss)
single_head_module = MODELS.build(single_head_)
self.num_heads = num_heads
self.head_series = nn.ModuleList(
[copy.deepcopy(single_head_module) for _ in range(num_heads)])
self.deep_supervision = deep_supervision
# Gaussian random feature embedding layer for time
time_dim = feat_channels * 4
self.time_mlp = nn.Sequential(
SinusoidalPositionEmbeddings(feat_channels),
nn.Linear(feat_channels, time_dim), nn.GELU(),
nn.Linear(time_dim, time_dim))
self.prior_prob = prior_prob
self.test_cfg = test_cfg
self.use_nms = self.test_cfg.get('use_nms', True)
self._init_weights()
def _init_weights(self):
# init all parameters.
bias_value = -math.log((1 - self.prior_prob) / self.prior_prob)
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
# initialize the bias for focal loss and fed loss.
if self.use_focal_loss or self.use_fed_loss:
if p.shape[-1] == self.num_classes or \
p.shape[-1] == self.num_classes + 1:
nn.init.constant_(p, bias_value)
def _build_diffusion(self):
betas = cosine_beta_schedule(self.timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.)
self.register_buffer('betas', betas)
self.register_buffer('alphas_cumprod', alphas_cumprod)
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
self.register_buffer('sqrt_one_minus_alphas_cumprod',
torch.sqrt(1. - alphas_cumprod))
self.register_buffer('log_one_minus_alphas_cumprod',
torch.log(1. - alphas_cumprod))
self.register_buffer('sqrt_recip_alphas_cumprod',
torch.sqrt(1. / alphas_cumprod))
self.register_buffer('sqrt_recipm1_alphas_cumprod',
torch.sqrt(1. / alphas_cumprod - 1))
# calculations for posterior q(x_{t-1} | x_t, x_0)
# equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (
1. - alphas_cumprod)
self.register_buffer('posterior_variance', posterior_variance)
# log calculation clipped because the posterior variance is 0 at
# the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped',
torch.log(posterior_variance.clamp(min=1e-20)))
self.register_buffer(
'posterior_mean_coef1',
betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
self.register_buffer('posterior_mean_coef2',
(1. - alphas_cumprod_prev) * torch.sqrt(alphas) /
(1. - alphas_cumprod))
def forward(self, features, init_bboxes, init_t, init_features=None):
time = self.time_mlp(init_t, )
inter_class_logits = []
inter_pred_bboxes = []
bs = len(features[0])
bboxes = init_bboxes
if init_features is not None:
init_features = init_features[None].repeat(1, bs, 1)
proposal_features = init_features.clone()
else:
proposal_features = None
for head_idx, single_head in enumerate(self.head_series):
class_logits, pred_bboxes, proposal_features = single_head(
features, bboxes, proposal_features, self.roi_extractor, time)
if self.deep_supervision:
inter_class_logits.append(class_logits)
inter_pred_bboxes.append(pred_bboxes)
bboxes = pred_bboxes.detach()
if self.deep_supervision:
return torch.stack(inter_class_logits), torch.stack(
inter_pred_bboxes)
else:
return class_logits[None, ...], pred_bboxes[None, ...]
def loss(self, x: Tuple[Tensor], batch_data_samples: SampleList) -> dict:
"""Perform forward propagation and loss calculation of the detection
head on the features of the upstream network.
Args:
x (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
Returns:
dict: A dictionary of loss components.
"""
prepare_outputs = self.prepare_training_targets(batch_data_samples)
(batch_gt_instances, batch_pred_instances, batch_gt_instances_ignore,
batch_img_metas) = prepare_outputs
batch_diff_bboxes = torch.stack([
pred_instances.diff_bboxes_abs
for pred_instances in batch_pred_instances
])
batch_time = torch.stack(
[pred_instances.time for pred_instances in batch_pred_instances])
pred_logits, pred_bboxes = self(x, batch_diff_bboxes, batch_time)
output = {
'pred_logits': pred_logits[-1],
'pred_boxes': pred_bboxes[-1]
}
if self.deep_supervision:
output['aux_outputs'] = [{
'pred_logits': a,
'pred_boxes': b
} for a, b in zip(pred_logits[:-1], pred_bboxes[:-1])]
losses = self.criterion(output, batch_gt_instances, batch_img_metas)
return losses
def prepare_training_targets(self, batch_data_samples):
# hard-setting seed to keep results same (if necessary)
# random.seed(0)
# torch.manual_seed(0)
# torch.cuda.manual_seed_all(0)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
batch_gt_instances = []
batch_pred_instances = []
batch_gt_instances_ignore = []
batch_img_metas = []
for data_sample in batch_data_samples:
img_meta = data_sample.metainfo
gt_instances = data_sample.gt_instances
gt_bboxes = gt_instances.bboxes
h, w = img_meta['img_shape']
image_size = gt_bboxes.new_tensor([w, h, w, h])
norm_gt_bboxes = gt_bboxes / image_size
norm_gt_bboxes_cxcywh = bbox_xyxy_to_cxcywh(norm_gt_bboxes)
pred_instances = self.prepare_diffusion(norm_gt_bboxes_cxcywh,
image_size)
gt_instances.set_metainfo(dict(image_size=image_size))
gt_instances.norm_bboxes_cxcywh = norm_gt_bboxes_cxcywh
batch_gt_instances.append(gt_instances)
batch_pred_instances.append(pred_instances)
batch_img_metas.append(data_sample.metainfo)
if 'ignored_instances' in data_sample:
batch_gt_instances_ignore.append(data_sample.ignored_instances)
else:
batch_gt_instances_ignore.append(None)
return (batch_gt_instances, batch_pred_instances,
batch_gt_instances_ignore, batch_img_metas)
def prepare_diffusion(self, gt_boxes, image_size):
device = gt_boxes.device
time = torch.randint(
0, self.timesteps, (1, ), dtype=torch.long, device=device)
noise = torch.randn(self.num_proposals, 4, device=device)
num_gt = gt_boxes.shape[0]
if num_gt < self.num_proposals:
# 3 * sigma = 1/2 --> sigma: 1/6
box_placeholder = torch.randn(
self.num_proposals - num_gt, 4, device=device) / 6. + 0.5
box_placeholder[:, 2:] = torch.clip(
box_placeholder[:, 2:], min=1e-4)
x_start = torch.cat((gt_boxes, box_placeholder), dim=0)
else:
select_mask = [True] * self.num_proposals + \
[False] * (num_gt - self.num_proposals)
random.shuffle(select_mask)
x_start = gt_boxes[select_mask]
x_start = (x_start * 2. - 1.) * self.snr_scale
# noise sample
x = self.q_sample(x_start=x_start, time=time, noise=noise)
x = torch.clamp(x, min=-1 * self.snr_scale, max=self.snr_scale)
x = ((x / self.snr_scale) + 1) / 2.
diff_bboxes = bbox_cxcywh_to_xyxy(x)
# convert to abs bboxes
diff_bboxes_abs = diff_bboxes * image_size
metainfo = dict(time=time.squeeze(-1))
pred_instances = InstanceData(metainfo=metainfo)
pred_instances.diff_bboxes = diff_bboxes
pred_instances.diff_bboxes_abs = diff_bboxes_abs
pred_instances.noise = noise
return pred_instances
# forward diffusion
def q_sample(self, x_start, time, noise=None):
if noise is None:
noise = torch.randn_like(x_start)
x_start_shape = x_start.shape
sqrt_alphas_cumprod_t = extract(self.sqrt_alphas_cumprod, time,
x_start_shape)
sqrt_one_minus_alphas_cumprod_t = extract(
self.sqrt_one_minus_alphas_cumprod, time, x_start_shape)
return sqrt_alphas_cumprod_t * x_start + \
sqrt_one_minus_alphas_cumprod_t * noise
def predict(self,
x: Tuple[Tensor],
batch_data_samples: SampleList,
rescale: bool = False) -> InstanceList:
"""Perform forward propagation of the detection head and predict
detection results on the features of the upstream network.
Args:
x (tuple[Tensor]): Multi-level features from the
upstream network, each is a 4D-tensor.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[obj:`InstanceData`]: Detection results of each image
after the post process.
"""
# hard-setting seed to keep results same (if necessary)
# seed = 0
# random.seed(seed)
# torch.manual_seed(seed)
# torch.cuda.manual_seed_all(seed)
device = x[-1].device
batch_img_metas = [
data_samples.metainfo for data_samples in batch_data_samples
]
(time_pairs, batch_noise_bboxes, batch_noise_bboxes_raw,
batch_image_size) = self.prepare_testing_targets(
batch_img_metas, device)
predictions = self.predict_by_feat(
x,
time_pairs=time_pairs,
batch_noise_bboxes=batch_noise_bboxes,
batch_noise_bboxes_raw=batch_noise_bboxes_raw,
batch_image_size=batch_image_size,
device=device,
batch_img_metas=batch_img_metas)
return predictions
def predict_by_feat(self,
x,
time_pairs,
batch_noise_bboxes,
batch_noise_bboxes_raw,
batch_image_size,
device,
batch_img_metas=None,
cfg=None,
rescale=True):
batch_size = len(batch_img_metas)
cfg = self.test_cfg if cfg is None else cfg
cfg = copy.deepcopy(cfg)
ensemble_score, ensemble_label, ensemble_coord = [], [], []
for time, time_next in time_pairs:
batch_time = torch.full((batch_size, ),
time,
device=device,
dtype=torch.long)
# self_condition = x_start if self.self_condition else None
pred_logits, pred_bboxes = self(x, batch_noise_bboxes, batch_time)
x_start = pred_bboxes[-1]
x_start = x_start / batch_image_size[:, None, :]
x_start = bbox_xyxy_to_cxcywh(x_start)
x_start = (x_start * 2 - 1.) * self.snr_scale
x_start = torch.clamp(
x_start, min=-1 * self.snr_scale, max=self.snr_scale)
pred_noise = self.predict_noise_from_start(batch_noise_bboxes_raw,
batch_time, x_start)
pred_noise_list, x_start_list = [], []
noise_bboxes_list, num_remain_list = [], []
if self.box_renewal: # filter
score_thr = cfg.get('score_thr', 0)
for img_id in range(batch_size):
score_per_image = pred_logits[-1][img_id]
score_per_image = torch.sigmoid(score_per_image)
value, _ = torch.max(score_per_image, -1, keepdim=False)
keep_idx = value > score_thr
num_remain_list.append(torch.sum(keep_idx))
pred_noise_list.append(pred_noise[img_id, keep_idx, :])
x_start_list.append(x_start[img_id, keep_idx, :])
noise_bboxes_list.append(batch_noise_bboxes[img_id,
keep_idx, :])
if time_next < 0:
# Not same as original DiffusionDet
if self.use_ensemble and self.sampling_timesteps > 1:
box_pred_per_image, scores_per_image, labels_per_image = \
self.inference(
box_cls=pred_logits[-1],
box_pred=pred_bboxes[-1],
cfg=cfg,
device=device)
ensemble_score.append(scores_per_image)
ensemble_label.append(labels_per_image)
ensemble_coord.append(box_pred_per_image)
continue
alpha = self.alphas_cumprod[time]
alpha_next = self.alphas_cumprod[time_next]
sigma = self.ddim_sampling_eta * ((1 - alpha / alpha_next) *
(1 - alpha_next) /
(1 - alpha)).sqrt()
c = (1 - alpha_next - sigma**2).sqrt()
batch_noise_bboxes_list = []
batch_noise_bboxes_raw_list = []
for idx in range(batch_size):
pred_noise = pred_noise_list[idx]
x_start = x_start_list[idx]
noise_bboxes = noise_bboxes_list[idx]
num_remain = num_remain_list[idx]
noise = torch.randn_like(noise_bboxes)
noise_bboxes = x_start * alpha_next.sqrt() + \
c * pred_noise + sigma * noise
if self.box_renewal: # filter
# replenish with randn boxes
if num_remain < self.num_proposals:
noise_bboxes = torch.cat(
(noise_bboxes,
torch.randn(
self.num_proposals - num_remain,
4,
device=device)),
dim=0)
else:
select_mask = [True] * self.num_proposals + \
[False] * (num_remain -
self.num_proposals)
random.shuffle(select_mask)
noise_bboxes = noise_bboxes[select_mask]
# raw noise boxes
batch_noise_bboxes_raw_list.append(noise_bboxes)
# resize to xyxy
noise_bboxes = torch.clamp(
noise_bboxes,
min=-1 * self.snr_scale,
max=self.snr_scale)
noise_bboxes = ((noise_bboxes / self.snr_scale) + 1) / 2
noise_bboxes = bbox_cxcywh_to_xyxy(noise_bboxes)
noise_bboxes = noise_bboxes * batch_image_size[idx]
batch_noise_bboxes_list.append(noise_bboxes)
batch_noise_bboxes = torch.stack(batch_noise_bboxes_list)
batch_noise_bboxes_raw = torch.stack(batch_noise_bboxes_raw_list)
if self.use_ensemble and self.sampling_timesteps > 1:
box_pred_per_image, scores_per_image, labels_per_image = \
self.inference(
box_cls=pred_logits[-1],
box_pred=pred_bboxes[-1],
cfg=cfg,
device=device)
ensemble_score.append(scores_per_image)
ensemble_label.append(labels_per_image)
ensemble_coord.append(box_pred_per_image)
if self.use_ensemble and self.sampling_timesteps > 1:
steps = len(ensemble_score)
results_list = []
for idx in range(batch_size):
ensemble_score_per_img = [
ensemble_score[i][idx] for i in range(steps)
]
ensemble_label_per_img = [
ensemble_label[i][idx] for i in range(steps)
]
ensemble_coord_per_img = [
ensemble_coord[i][idx] for i in range(steps)
]
scores_per_image = torch.cat(ensemble_score_per_img, dim=0)
labels_per_image = torch.cat(ensemble_label_per_img, dim=0)
box_pred_per_image = torch.cat(ensemble_coord_per_img, dim=0)
if self.use_nms:
det_bboxes, keep_idxs = batched_nms(
box_pred_per_image, scores_per_image, labels_per_image,
cfg.nms)
box_pred_per_image = box_pred_per_image[keep_idxs]
labels_per_image = labels_per_image[keep_idxs]
scores_per_image = det_bboxes[:, -1]
results = InstanceData()
results.bboxes = box_pred_per_image
results.scores = scores_per_image
results.labels = labels_per_image
results_list.append(results)
else:
box_cls = pred_logits[-1]
box_pred = pred_bboxes[-1]
results_list = self.inference(box_cls, box_pred, cfg, device)
if rescale:
results_list = self.do_results_post_process(
results_list, cfg, batch_img_metas=batch_img_metas)
return results_list
@staticmethod
def do_results_post_process(results_list, cfg, batch_img_metas=None):
processed_results = []
for results, img_meta in zip(results_list, batch_img_metas):
assert img_meta.get('scale_factor') is not None
scale_factor = [1 / s for s in img_meta['scale_factor']]
results.bboxes = scale_boxes(results.bboxes, scale_factor)
# clip w, h
h, w = img_meta['ori_shape']
results.bboxes[:, 0::2] = results.bboxes[:, 0::2].clamp(
min=0, max=w)
results.bboxes[:, 1::2] = results.bboxes[:, 1::2].clamp(
min=0, max=h)
# filter small size bboxes
if cfg.get('min_bbox_size', 0) >= 0:
w, h = get_box_wh(results.bboxes)
valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size)
if not valid_mask.all():
results = results[valid_mask]
processed_results.append(results)
return processed_results
def prepare_testing_targets(self, batch_img_metas, device):
# [-1, 0, 1, 2, ..., T-1] when sampling_timesteps == timesteps
times = torch.linspace(
-1, self.timesteps - 1, steps=self.sampling_timesteps + 1)
times = list(reversed(times.int().tolist()))
# [(T-1, T-2), (T-2, T-3), ..., (1, 0), (0, -1)]
time_pairs = list(zip(times[:-1], times[1:]))
noise_bboxes_list = []
noise_bboxes_raw_list = []
image_size_list = []
for img_meta in batch_img_metas:
h, w = img_meta['img_shape']
image_size = torch.tensor([w, h, w, h],
dtype=torch.float32,
device=device)
noise_bboxes_raw = torch.randn((self.num_proposals, 4),
device=device)
noise_bboxes = torch.clamp(
noise_bboxes_raw, min=-1 * self.snr_scale, max=self.snr_scale)
noise_bboxes = ((noise_bboxes / self.snr_scale) + 1) / 2
noise_bboxes = bbox_cxcywh_to_xyxy(noise_bboxes)
noise_bboxes = noise_bboxes * image_size
noise_bboxes_raw_list.append(noise_bboxes_raw)
noise_bboxes_list.append(noise_bboxes)
image_size_list.append(image_size[None])
batch_noise_bboxes = torch.stack(noise_bboxes_list)
batch_image_size = torch.cat(image_size_list)
batch_noise_bboxes_raw = torch.stack(noise_bboxes_raw_list)
return (time_pairs, batch_noise_bboxes, batch_noise_bboxes_raw,
batch_image_size)
def predict_noise_from_start(self, x_t, t, x0):
results = (extract(
self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) / \
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
return results
def inference(self, box_cls, box_pred, cfg, device):
"""
Args:
box_cls (Tensor): tensor of shape (batch_size, num_proposals, K).
The tensor predicts the classification probability for
each proposal.
box_pred (Tensor): tensors of shape (batch_size, num_proposals, 4).
The tensor predicts 4-vector (x,y,w,h) box
regression values for every proposal
Returns:
results (List[Instances]): a list of #images elements.
"""
results = []
if self.use_focal_loss or self.use_fed_loss:
scores = torch.sigmoid(box_cls)
labels = torch.arange(
self.num_classes,
device=device).unsqueeze(0).repeat(self.num_proposals,
1).flatten(0, 1)
box_pred_list = []
scores_list = []
labels_list = []
for i, (scores_per_image,
box_pred_per_image) in enumerate(zip(scores, box_pred)):
scores_per_image, topk_indices = scores_per_image.flatten(
0, 1).topk(
self.num_proposals, sorted=False)
labels_per_image = labels[topk_indices]
box_pred_per_image = box_pred_per_image.view(-1, 1, 4).repeat(
1, self.num_classes, 1).view(-1, 4)
box_pred_per_image = box_pred_per_image[topk_indices]
if self.use_ensemble and self.sampling_timesteps > 1:
box_pred_list.append(box_pred_per_image)
scores_list.append(scores_per_image)
labels_list.append(labels_per_image)
continue
if self.use_nms:
det_bboxes, keep_idxs = batched_nms(
box_pred_per_image, scores_per_image, labels_per_image,
cfg.nms)
box_pred_per_image = box_pred_per_image[keep_idxs]
labels_per_image = labels_per_image[keep_idxs]
# some nms would reweight the score, such as softnms
scores_per_image = det_bboxes[:, -1]
result = InstanceData()
result.bboxes = box_pred_per_image
result.scores = scores_per_image
result.labels = labels_per_image
results.append(result)
else:
# For each box we assign the best class or the second
# best if the best on is `no_object`.
scores, labels = F.softmax(box_cls, dim=-1)[:, :, :-1].max(-1)
for i, (scores_per_image, labels_per_image,
box_pred_per_image) in enumerate(
zip(scores, labels, box_pred)):
if self.use_ensemble and self.sampling_timesteps > 1:
return box_pred_per_image, scores_per_image, \
labels_per_image
if self.use_nms:
det_bboxes, keep_idxs = batched_nms(
box_pred_per_image, scores_per_image, labels_per_image,
cfg.nms)
box_pred_per_image = box_pred_per_image[keep_idxs]
labels_per_image = labels_per_image[keep_idxs]
# some nms would reweight the score, such as softnms
scores_per_image = det_bboxes[:, -1]
result = InstanceData()
result.bboxes = box_pred_per_image
result.scores = scores_per_image
result.labels = labels_per_image
results.append(result)
if self.use_ensemble and self.sampling_timesteps > 1:
return box_pred_list, scores_list, labels_list
else:
return results
@MODELS.register_module()
class SingleDiffusionDetHead(nn.Module):
def __init__(
self,
num_classes=80,
feat_channels=256,
dim_feedforward=2048,
num_cls_convs=1,
num_reg_convs=3,
num_heads=8,
dropout=0.0,
pooler_resolution=7,
scale_clamp=_DEFAULT_SCALE_CLAMP,
bbox_weights=(2.0, 2.0, 1.0, 1.0),
use_focal_loss=True,
use_fed_loss=False,
act_cfg=dict(type='ReLU', inplace=True),
dynamic_conv=dict(dynamic_dim=64, dynamic_num=2)
) -> None:
super().__init__()
self.feat_channels = feat_channels
# Dynamic
self.self_attn = nn.MultiheadAttention(
feat_channels, num_heads, dropout=dropout)
self.inst_interact = DynamicConv(
feat_channels=feat_channels,
pooler_resolution=pooler_resolution,
dynamic_dim=dynamic_conv['dynamic_dim'],
dynamic_num=dynamic_conv['dynamic_num'])
self.linear1 = nn.Linear(feat_channels, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, feat_channels)
self.norm1 = nn.LayerNorm(feat_channels)
self.norm2 = nn.LayerNorm(feat_channels)
self.norm3 = nn.LayerNorm(feat_channels)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = build_activation_layer(act_cfg)
# block time mlp
self.block_time_mlp = nn.Sequential(
nn.SiLU(), nn.Linear(feat_channels * 4, feat_channels * 2))
# cls.
cls_module = list()
for _ in range(num_cls_convs):
cls_module.append(nn.Linear(feat_channels, feat_channels, False))
cls_module.append(nn.LayerNorm(feat_channels))
cls_module.append(nn.ReLU(inplace=True))
self.cls_module = nn.ModuleList(cls_module)
# reg.
reg_module = list()
for _ in range(num_reg_convs):
reg_module.append(nn.Linear(feat_channels, feat_channels, False))
reg_module.append(nn.LayerNorm(feat_channels))
reg_module.append(nn.ReLU(inplace=True))
self.reg_module = nn.ModuleList(reg_module)
# pred.
self.use_focal_loss = use_focal_loss
self.use_fed_loss = use_fed_loss
if self.use_focal_loss or self.use_fed_loss:
self.class_logits = nn.Linear(feat_channels, num_classes)
else:
self.class_logits = nn.Linear(feat_channels, num_classes + 1)
self.bboxes_delta = nn.Linear(feat_channels, 4)
self.scale_clamp = scale_clamp
self.bbox_weights = bbox_weights
def forward(self, features, bboxes, pro_features, pooler, time_emb):
"""
:param bboxes: (N, num_boxes, 4)
:param pro_features: (N, num_boxes, feat_channels)
"""
N, num_boxes = bboxes.shape[:2]
# roi_feature.
proposal_boxes = list()
for b in range(N):
proposal_boxes.append(bboxes[b])
rois = bbox2roi(proposal_boxes)
roi_features = pooler(features, rois)
if pro_features is None:
pro_features = roi_features.view(N, num_boxes, self.feat_channels,
-1).mean(-1)
roi_features = roi_features.view(N * num_boxes, self.feat_channels,
-1).permute(2, 0, 1)
# self_att.
pro_features = pro_features.view(N, num_boxes,
self.feat_channels).permute(1, 0, 2)
pro_features2 = self.self_attn(
pro_features, pro_features, value=pro_features)[0]
pro_features = pro_features + self.dropout1(pro_features2)
pro_features = self.norm1(pro_features)
# inst_interact.
pro_features = pro_features.view(
num_boxes, N,
self.feat_channels).permute(1, 0,
2).reshape(1, N * num_boxes,
self.feat_channels)
pro_features2 = self.inst_interact(pro_features, roi_features)
pro_features = pro_features + self.dropout2(pro_features2)
obj_features = self.norm2(pro_features)
# obj_feature.
obj_features2 = self.linear2(
self.dropout(self.activation(self.linear1(obj_features))))
obj_features = obj_features + self.dropout3(obj_features2)
obj_features = self.norm3(obj_features)
fc_feature = obj_features.transpose(0, 1).reshape(N * num_boxes, -1)
scale_shift = self.block_time_mlp(time_emb)
scale_shift = torch.repeat_interleave(scale_shift, num_boxes, dim=0)
scale, shift = scale_shift.chunk(2, dim=1)
fc_feature = fc_feature * (scale + 1) + shift
cls_feature = fc_feature.clone()
reg_feature = fc_feature.clone()
for cls_layer in self.cls_module:
cls_feature = cls_layer(cls_feature)
for reg_layer in self.reg_module:
reg_feature = reg_layer(reg_feature)
class_logits = self.class_logits(cls_feature)
bboxes_deltas = self.bboxes_delta(reg_feature)
pred_bboxes = self.apply_deltas(bboxes_deltas, bboxes.view(-1, 4))
return (class_logits.view(N, num_boxes,
-1), pred_bboxes.view(N, num_boxes,
-1), obj_features)
def apply_deltas(self, deltas, boxes):
"""Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.
Args:
deltas (Tensor): transformation deltas of shape (N, k*4),
where k >= 1. deltas[i] represents k potentially
different class-specific box transformations for
the single box boxes[i].
boxes (Tensor): boxes to transform, of shape (N, 4)
"""
boxes = boxes.to(deltas.dtype)
widths = boxes[:, 2] - boxes[:, 0]
heights = boxes[:, 3] - boxes[:, 1]
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
wx, wy, ww, wh = self.bbox_weights
dx = deltas[:, 0::4] / wx
dy = deltas[:, 1::4] / wy
dw = deltas[:, 2::4] / ww
dh = deltas[:, 3::4] / wh
# Prevent sending too large values into torch.exp()
dw = torch.clamp(dw, max=self.scale_clamp)
dh = torch.clamp(dh, max=self.scale_clamp)
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
pred_w = torch.exp(dw) * widths[:, None]
pred_h = torch.exp(dh) * heights[:, None]
pred_boxes = torch.zeros_like(deltas)
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # x1
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # y1
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w # x2
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h # y2
return pred_boxes
class DynamicConv(nn.Module):
def __init__(self,
feat_channels: int,
dynamic_dim: int = 64,
dynamic_num: int = 2,
pooler_resolution: int = 7) -> None:
super().__init__()
self.feat_channels = feat_channels
self.dynamic_dim = dynamic_dim
self.dynamic_num = dynamic_num
self.num_params = self.feat_channels * self.dynamic_dim
self.dynamic_layer = nn.Linear(self.feat_channels,
self.dynamic_num * self.num_params)
self.norm1 = nn.LayerNorm(self.dynamic_dim)
self.norm2 = nn.LayerNorm(self.feat_channels)
self.activation = nn.ReLU(inplace=True)
num_output = self.feat_channels * pooler_resolution**2
self.out_layer = nn.Linear(num_output, self.feat_channels)
self.norm3 = nn.LayerNorm(self.feat_channels)
def forward(self, pro_features: Tensor, roi_features: Tensor) -> Tensor:
"""Forward function.
Args:
pro_features: (1, N * num_boxes, self.feat_channels)
roi_features: (49, N * num_boxes, self.feat_channels)
Returns:
"""
features = roi_features.permute(1, 0, 2)
parameters = self.dynamic_layer(pro_features).permute(1, 0, 2)
param1 = parameters[:, :, :self.num_params].view(
-1, self.feat_channels, self.dynamic_dim)
param2 = parameters[:, :,
self.num_params:].view(-1, self.dynamic_dim,
self.feat_channels)
features = torch.bmm(features, param1)
features = self.norm1(features)
features = self.activation(features)
features = torch.bmm(features, param2)
features = self.norm2(features)
features = self.activation(features)
features = features.flatten(1)
features = self.out_layer(features)
features = self.norm3(features)
features = self.activation(features)
return features
|