File size: 10,790 Bytes
6c9ac8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import unittest

from mmdet.datasets.transforms import (AutoAugment, AutoContrast, Brightness,
                                       Color, Contrast, Equalize, Invert,
                                       Posterize, RandAugment, Rotate,
                                       Sharpness, ShearX, ShearY, Solarize,
                                       SolarizeAdd, TranslateX, TranslateY)
from mmdet.utils import register_all_modules
from .utils import check_result_same, construct_toy_data

register_all_modules()


class TestAutoAugment(unittest.TestCase):

    def setUp(self):
        """Setup the model and optimizer which are used in every test method.

        TestCase calls functions in this order: setUp() -> testMethod() ->
        tearDown() -> cleanUp()
        """
        self.check_keys = ('img', 'gt_bboxes', 'gt_bboxes_labels', 'gt_masks',
                           'gt_ignore_flags', 'gt_seg_map',
                           'homography_matrix')
        self.results_mask = construct_toy_data(poly2mask=True)
        self.img_fill_val = (104, 116, 124)
        self.seg_ignore_label = 255

    def test_autoaugment(self):
        # test AutoAugment equipped with Shear
        policies = [[
            dict(type='ShearX', prob=1.0, level=3, reversal_prob=0.0),
            dict(type='ShearY', prob=1.0, level=7, reversal_prob=1.0)
        ]]
        transform_auto = AutoAugment(policies=policies)
        results_auto = transform_auto(copy.deepcopy(self.results_mask))
        transform_shearx = ShearX(prob=1.0, level=3, reversal_prob=0.0)
        transform_sheary = ShearY(prob=1.0, level=7, reversal_prob=1.0)
        results_sheared = transform_sheary(
            transform_shearx(copy.deepcopy(self.results_mask)))
        check_result_same(results_sheared, results_auto, self.check_keys)

        # test AutoAugment equipped with Rotate
        policies = [[
            dict(type='Rotate', prob=1.0, level=10, reversal_prob=0.0),
        ]]
        transform_auto = AutoAugment(policies=policies)
        results_auto = transform_auto(copy.deepcopy(self.results_mask))
        transform_rotate = Rotate(prob=1.0, level=10, reversal_prob=0.0)
        results_rotated = transform_rotate(copy.deepcopy(self.results_mask))
        check_result_same(results_rotated, results_auto, self.check_keys)

        # test AutoAugment equipped with Translate
        policies = [[
            dict(
                type='TranslateX',
                prob=1.0,
                level=10,
                max_mag=1.0,
                reversal_prob=0.0),
            dict(
                type='TranslateY',
                prob=1.0,
                level=10,
                max_mag=1.0,
                reversal_prob=1.0)
        ]]
        transform_auto = AutoAugment(policies=policies)
        results_auto = transform_auto(copy.deepcopy(self.results_mask))
        transform_translatex = TranslateX(
            prob=1.0, level=10, max_mag=1.0, reversal_prob=0.0)
        transform_translatey = TranslateY(
            prob=1.0, level=10, max_mag=1.0, reversal_prob=1.0)
        results_translated = transform_translatey(
            transform_translatex(copy.deepcopy(self.results_mask)))
        check_result_same(results_translated, results_auto, self.check_keys)

        # test AutoAugment equipped with Brightness
        policies = [[
            dict(type='Brightness', prob=1.0, level=3),
        ]]
        transform_auto = AutoAugment(policies=policies)
        results_auto = transform_auto(copy.deepcopy(self.results_mask))
        transform_brightness = Brightness(prob=1.0, level=3)
        results_brightness = transform_brightness(
            copy.deepcopy(self.results_mask))
        check_result_same(results_brightness, results_auto, self.check_keys)

        # test AutoAugment equipped with Color
        policies = [[
            dict(type='Color', prob=1.0, level=3),
        ]]
        transform_auto = AutoAugment(policies=policies)
        results_auto = transform_auto(copy.deepcopy(self.results_mask))
        transform_color = Color(prob=1.0, level=3)
        results_colored = transform_color(copy.deepcopy(self.results_mask))
        check_result_same(results_colored, results_auto, self.check_keys)

        # test AutoAugment equipped with Contrast
        policies = [[
            dict(type='Contrast', prob=1.0, level=3),
        ]]
        transform_auto = AutoAugment(policies=policies)
        results_auto = transform_auto(copy.deepcopy(self.results_mask))
        transform_contrast = Contrast(prob=1.0, level=3)
        results_contrasted = transform_contrast(
            copy.deepcopy(self.results_mask))
        check_result_same(results_contrasted, results_auto, self.check_keys)

        # test AutoAugment equipped with Sharpness
        policies = [[
            dict(type='Sharpness', prob=1.0, level=3),
        ]]
        transform_auto = AutoAugment(policies=policies)
        results_auto = transform_auto(copy.deepcopy(self.results_mask))
        transform_sharpness = Sharpness(prob=1.0, level=3)
        results_sharpness = transform_sharpness(
            copy.deepcopy(self.results_mask))
        check_result_same(results_sharpness, results_auto, self.check_keys)

        # test AutoAugment equipped with Solarize
        policies = [[
            dict(type='Solarize', prob=1.0, level=3),
        ]]
        transform_auto = AutoAugment(policies=policies)
        results_auto = transform_auto(copy.deepcopy(self.results_mask))
        transform_solarize = Solarize(prob=1.0, level=3)
        results_solarized = transform_solarize(
            copy.deepcopy(self.results_mask))
        check_result_same(results_solarized, results_auto, self.check_keys)

        # test AutoAugment equipped with SolarizeAdd
        policies = [[
            dict(type='SolarizeAdd', prob=1.0, level=3),
        ]]
        transform_auto = AutoAugment(policies=policies)
        results_auto = transform_auto(copy.deepcopy(self.results_mask))
        transform_solarizeadd = SolarizeAdd(prob=1.0, level=3)
        results_solarizeadded = transform_solarizeadd(
            copy.deepcopy(self.results_mask))
        check_result_same(results_solarizeadded, results_auto, self.check_keys)

        # test AutoAugment equipped with Posterize
        policies = [[
            dict(type='Posterize', prob=1.0, level=3),
        ]]
        transform_auto = AutoAugment(policies=policies)
        results_auto = transform_auto(copy.deepcopy(self.results_mask))
        transform_posterize = Posterize(prob=1.0, level=3)
        results_posterized = transform_posterize(
            copy.deepcopy(self.results_mask))
        check_result_same(results_posterized, results_auto, self.check_keys)

        # test AutoAugment equipped with Equalize
        policies = [[
            dict(type='Equalize', prob=1.0),
        ]]
        transform_auto = AutoAugment(policies=policies)
        results_auto = transform_auto(copy.deepcopy(self.results_mask))
        transform_equalize = Equalize(prob=1.0)
        results_equalized = transform_equalize(
            copy.deepcopy(self.results_mask))
        check_result_same(results_equalized, results_auto, self.check_keys)

        # test AutoAugment equipped with AutoContrast
        policies = [[
            dict(type='AutoContrast', prob=1.0),
        ]]
        transform_auto = AutoAugment(policies=policies)
        results_auto = transform_auto(copy.deepcopy(self.results_mask))
        transform_autocontrast = AutoContrast(prob=1.0)
        results_autocontrast = transform_autocontrast(
            copy.deepcopy(self.results_mask))
        check_result_same(results_autocontrast, results_auto, self.check_keys)

        # test AutoAugment equipped with Invert
        policies = [[
            dict(type='Invert', prob=1.0),
        ]]
        transform_auto = AutoAugment(policies=policies)
        results_auto = transform_auto(copy.deepcopy(self.results_mask))
        transform_invert = Invert(prob=1.0)
        results_inverted = transform_invert(copy.deepcopy(self.results_mask))
        check_result_same(results_inverted, results_auto, self.check_keys)

        # test AutoAugment equipped with default policies
        transform_auto = AutoAugment()
        transform_auto(copy.deepcopy(self.results_mask))

    def test_repr(self):
        policies = [[
            dict(type='Rotate', prob=1.0, level=10, reversal_prob=0.0),
            dict(type='Invert', prob=1.0),
        ]]
        transform = AutoAugment(policies=policies)
        self.assertEqual(
            repr(transform), ('AutoAugment('
                              'policies=[['
                              "{'type': 'Rotate', 'prob': 1.0, "
                              "'level': 10, 'reversal_prob': 0.0}, "
                              "{'type': 'Invert', 'prob': 1.0}]], "
                              'prob=None)'))


class TestRandAugment(unittest.TestCase):

    def setUp(self):
        """Setup the model and optimizer which are used in every test method.

        TestCase calls functions in this order: setUp() -> testMethod() ->
        tearDown() -> cleanUp()
        """
        self.check_keys = ('img', 'gt_bboxes', 'gt_bboxes_labels', 'gt_masks',
                           'gt_ignore_flags', 'gt_seg_map',
                           'homography_matrix')
        self.results_mask = construct_toy_data(poly2mask=True)
        self.img_fill_val = (104, 116, 124)
        self.seg_ignore_label = 255

    def test_randaugment(self):
        # test RandAugment equipped with Rotate
        aug_space = [[
            dict(type='Rotate', prob=1.0, level=10, reversal_prob=0.0)
        ]]
        transform_rand = RandAugment(aug_space=aug_space, aug_num=1)
        results_rand = transform_rand(copy.deepcopy(self.results_mask))
        transform_rotate = Rotate(prob=1.0, level=10, reversal_prob=0.0)
        results_rotated = transform_rotate(copy.deepcopy(self.results_mask))
        check_result_same(results_rotated, results_rand, self.check_keys)

        # test RandAugment equipped with default augmentation space
        transform_rand = RandAugment()
        transform_rand(copy.deepcopy(self.results_mask))

    def test_repr(self):
        aug_space = [
            [dict(type='Rotate')],
            [dict(type='Invert')],
        ]
        transform = RandAugment(aug_space=aug_space)
        self.assertEqual(
            repr(transform), ('RandAugment('
                              'aug_space=['
                              "[{'type': 'Rotate'}], "
                              "[{'type': 'Invert'}]], "
                              'aug_num=2, '
                              'prob=None)'))