File size: 6,834 Bytes
6c9ac8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import copy
import os.path as osp
import unittest

from mmcv.transforms import Compose

from mmdet.datasets.transforms import MultiBranch, RandomOrder
from mmdet.utils import register_all_modules
from .utils import construct_toy_data

register_all_modules()


class TestMultiBranch(unittest.TestCase):

    def setUp(self):
        """Setup the model and optimizer which are used in every test method.

        TestCase calls functions in this order: setUp() -> testMethod() ->
        tearDown() -> cleanUp()
        """
        data_prefix = osp.join(osp.dirname(__file__), '../../data')
        img_path = osp.join(data_prefix, 'color.jpg')
        seg_map = osp.join(data_prefix, 'gray.jpg')
        self.meta_keys = ('img_id', 'img_path', 'ori_shape', 'img_shape',
                          'scale_factor', 'flip', 'flip_direction',
                          'homography_matrix')
        self.results = {
            'img_path':
            img_path,
            'img_id':
            12345,
            'img_shape': (300, 400),
            'seg_map_path':
            seg_map,
            'instances': [{
                'bbox': [0, 0, 10, 20],
                'bbox_label': 1,
                'mask': [[0, 0, 0, 20, 10, 20, 10, 0]],
                'ignore_flag': 0
            }, {
                'bbox': [10, 10, 110, 120],
                'bbox_label': 2,
                'mask': [[10, 10, 110, 10, 110, 120, 110, 10]],
                'ignore_flag': 0
            }, {
                'bbox': [50, 50, 60, 80],
                'bbox_label': 2,
                'mask': [[50, 50, 60, 50, 60, 80, 50, 80]],
                'ignore_flag': 1
            }]
        }
        self.branch_field = ['sup', 'sup_teacher', 'sup_student']
        self.weak_pipeline = [
            dict(type='ShearX'),
            dict(type='PackDetInputs', meta_keys=self.meta_keys)
        ]
        self.strong_pipeline = [
            dict(type='ShearX'),
            dict(type='ShearY'),
            dict(type='PackDetInputs', meta_keys=self.meta_keys)
        ]
        self.labeled_pipeline = [
            dict(type='LoadImageFromFile'),
            dict(
                type='LoadAnnotations',
                with_bbox=True,
                with_mask=True,
                with_seg=True),
            dict(type='Resize', scale=(1333, 800), keep_ratio=True),
            dict(type='RandomFlip', prob=0.5),
            dict(
                type='MultiBranch',
                branch_field=self.branch_field,
                sup_teacher=self.weak_pipeline,
                sup_student=self.strong_pipeline),
        ]
        self.unlabeled_pipeline = [
            dict(type='LoadImageFromFile'),
            dict(type='Resize', scale=(1333, 800), keep_ratio=True),
            dict(type='RandomFlip', prob=0.5),
            dict(
                type='MultiBranch',
                branch_field=self.branch_field,
                unsup_teacher=self.weak_pipeline,
                unsup_student=self.strong_pipeline),
        ]

    def test_transform(self):
        labeled_pipeline = Compose(self.labeled_pipeline)
        labeled_results = labeled_pipeline(copy.deepcopy(self.results))
        unlabeled_pipeline = Compose(self.unlabeled_pipeline)
        unlabeled_results = unlabeled_pipeline(copy.deepcopy(self.results))

        # test branch sup_teacher and sup_student
        sup_branches = ['sup_teacher', 'sup_student']
        for branch in sup_branches:
            self.assertIn(branch, labeled_results['data_samples'])
            self.assertIn('homography_matrix',
                          labeled_results['data_samples'][branch])
            self.assertIn('labels',
                          labeled_results['data_samples'][branch].gt_instances)
            self.assertIn('bboxes',
                          labeled_results['data_samples'][branch].gt_instances)
            self.assertIn('masks',
                          labeled_results['data_samples'][branch].gt_instances)
            self.assertIn('gt_sem_seg',
                          labeled_results['data_samples'][branch])
        # test branch unsup_teacher and unsup_student
        unsup_branches = ['unsup_teacher', 'unsup_student']
        for branch in unsup_branches:
            self.assertIn(branch, unlabeled_results['data_samples'])
            self.assertIn('homography_matrix',
                          unlabeled_results['data_samples'][branch])
            self.assertNotIn(
                'labels',
                unlabeled_results['data_samples'][branch].gt_instances)
            self.assertNotIn(
                'bboxes',
                unlabeled_results['data_samples'][branch].gt_instances)
            self.assertNotIn(
                'masks',
                unlabeled_results['data_samples'][branch].gt_instances)
            self.assertNotIn('gt_sem_seg',
                             unlabeled_results['data_samples'][branch])

    def test_repr(self):
        pipeline = [dict(type='PackDetInputs', meta_keys=())]
        transform = MultiBranch(
            branch_field=self.branch_field, sup=pipeline, unsup=pipeline)
        self.assertEqual(
            repr(transform),
            ("MultiBranch(branch_pipelines=['sup', 'unsup'])"))


class TestRandomOrder(unittest.TestCase):

    def setUp(self):
        """Setup the model and optimizer which are used in every test method.

        TestCase calls functions in this order: setUp() -> testMethod() ->
        tearDown() -> cleanUp()
        """
        self.results = construct_toy_data(poly2mask=True)
        self.pipeline = [
            dict(type='Sharpness'),
            dict(type='Contrast'),
            dict(type='Brightness'),
            dict(type='Rotate'),
            dict(type='ShearX'),
            dict(type='TranslateY')
        ]

    def test_transform(self):
        transform = RandomOrder(self.pipeline)
        results = transform(copy.deepcopy(self.results))
        self.assertEqual(results['img_shape'], self.results['img_shape'])
        self.assertEqual(results['gt_bboxes'].shape,
                         self.results['gt_bboxes'].shape)
        self.assertEqual(results['gt_bboxes_labels'],
                         self.results['gt_bboxes_labels'])
        self.assertEqual(results['gt_ignore_flags'],
                         self.results['gt_ignore_flags'])
        self.assertEqual(results['gt_masks'].masks.shape,
                         self.results['gt_masks'].masks.shape)
        self.assertEqual(results['gt_seg_map'].shape,
                         self.results['gt_seg_map'].shape)

    def test_repr(self):
        transform = RandomOrder(self.pipeline)
        self.assertEqual(
            repr(transform), ('RandomOrder(Sharpness, Contrast, '
                              'Brightness, Rotate, ShearX, TranslateY, )'))