File size: 9,982 Bytes
6c9ac8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) OpenMMLab. All rights reserved.
import unittest

import torch
from parameterized import parameterized

from mmdet.registry import MODELS
from mmdet.structures import DetDataSample
from mmdet.testing._utils import demo_mm_inputs, get_detector_cfg
from mmdet.utils import register_all_modules


class TestMaskFormer(unittest.TestCase):

    def setUp(self):
        register_all_modules()

    def _create_model_cfg(self):
        cfg_path = 'maskformer/maskformer_r50_ms-16xb1-75e_coco.py'
        model_cfg = get_detector_cfg(cfg_path)
        base_channels = 32
        model_cfg.backbone.depth = 18
        model_cfg.backbone.init_cfg = None
        model_cfg.backbone.base_channels = base_channels
        model_cfg.panoptic_head.in_channels = [
            base_channels * 2**i for i in range(4)
        ]
        model_cfg.panoptic_head.feat_channels = base_channels
        model_cfg.panoptic_head.out_channels = base_channels
        model_cfg.panoptic_head.pixel_decoder.encoder.\
            layer_cfg.self_attn_cfg.embed_dims = base_channels
        model_cfg.panoptic_head.pixel_decoder.encoder.\
            layer_cfg.ffn_cfg.embed_dims = base_channels
        model_cfg.panoptic_head.pixel_decoder.encoder.\
            layer_cfg.ffn_cfg.feedforward_channels = base_channels * 8
        model_cfg.panoptic_head.pixel_decoder.\
            positional_encoding.num_feats = base_channels // 2
        model_cfg.panoptic_head.positional_encoding.\
            num_feats = base_channels // 2
        model_cfg.panoptic_head.transformer_decoder.\
            layer_cfg.self_attn_cfg.embed_dims = base_channels
        model_cfg.panoptic_head.transformer_decoder. \
            layer_cfg.cross_attn_cfg.embed_dims = base_channels
        model_cfg.panoptic_head.transformer_decoder.\
            layer_cfg.ffn_cfg.embed_dims = base_channels
        model_cfg.panoptic_head.transformer_decoder.\
            layer_cfg.ffn_cfg.feedforward_channels = base_channels * 8
        return model_cfg

    def test_init(self):
        model_cfg = self._create_model_cfg()
        detector = MODELS.build(model_cfg)
        detector.init_weights()
        assert detector.backbone
        assert detector.panoptic_head

    @parameterized.expand([('cpu', ), ('cuda', )])
    def test_forward_loss_mode(self, device):
        model_cfg = self._create_model_cfg()
        detector = MODELS.build(model_cfg)

        if device == 'cuda' and not torch.cuda.is_available():
            return unittest.skip('test requires GPU and torch+cuda')
        detector = detector.to(device)

        packed_inputs = demo_mm_inputs(
            2,
            image_shapes=[(3, 128, 127), (3, 91, 92)],
            sem_seg_output_strides=1,
            with_mask=True,
            with_semantic=True)
        data = detector.data_preprocessor(packed_inputs, True)
        # Test loss mode
        losses = detector.forward(**data, mode='loss')
        self.assertIsInstance(losses, dict)

    @parameterized.expand([('cpu', ), ('cuda', )])
    def test_forward_predict_mode(self, device):
        model_cfg = self._create_model_cfg()
        detector = MODELS.build(model_cfg)
        if device == 'cuda' and not torch.cuda.is_available():
            return unittest.skip('test requires GPU and torch+cuda')
        detector = detector.to(device)
        packed_inputs = demo_mm_inputs(
            2,
            image_shapes=[(3, 128, 127), (3, 91, 92)],
            sem_seg_output_strides=1,
            with_mask=True,
            with_semantic=True)
        data = detector.data_preprocessor(packed_inputs, False)
        # Test forward test
        detector.eval()
        with torch.no_grad():
            batch_results = detector.forward(**data, mode='predict')
            self.assertEqual(len(batch_results), 2)
            self.assertIsInstance(batch_results[0], DetDataSample)

    @parameterized.expand([('cpu', ), ('cuda', )])
    def test_forward_tensor_mode(self, device):
        model_cfg = self._create_model_cfg()
        detector = MODELS.build(model_cfg)
        if device == 'cuda' and not torch.cuda.is_available():
            return unittest.skip('test requires GPU and torch+cuda')
        detector = detector.to(device)

        packed_inputs = demo_mm_inputs(
            2, [[3, 128, 128], [3, 125, 130]],
            sem_seg_output_strides=1,
            with_mask=True,
            with_semantic=True)
        data = detector.data_preprocessor(packed_inputs, False)
        out = detector.forward(**data, mode='tensor')
        self.assertIsInstance(out, tuple)


class TestMask2Former(unittest.TestCase):

    def setUp(self):
        register_all_modules()

    def _create_model_cfg(self, cfg_path):
        model_cfg = get_detector_cfg(cfg_path)
        base_channels = 32
        model_cfg.backbone.depth = 18
        model_cfg.backbone.init_cfg = None
        model_cfg.backbone.base_channels = base_channels
        model_cfg.panoptic_head.in_channels = [
            base_channels * 2**i for i in range(4)
        ]
        model_cfg.panoptic_head.feat_channels = base_channels
        model_cfg.panoptic_head.out_channels = base_channels
        model_cfg.panoptic_head.pixel_decoder.encoder.\
            layer_cfg.self_attn_cfg.embed_dims = base_channels
        model_cfg.panoptic_head.pixel_decoder.encoder.\
            layer_cfg.ffn_cfg.embed_dims = base_channels
        model_cfg.panoptic_head.pixel_decoder.encoder.\
            layer_cfg.ffn_cfg.feedforward_channels = base_channels * 4
        model_cfg.panoptic_head.pixel_decoder.\
            positional_encoding.num_feats = base_channels // 2
        model_cfg.panoptic_head.positional_encoding.\
            num_feats = base_channels // 2
        model_cfg.panoptic_head.transformer_decoder.\
            layer_cfg.self_attn_cfg.embed_dims = base_channels
        model_cfg.panoptic_head.transformer_decoder. \
            layer_cfg.cross_attn_cfg.embed_dims = base_channels
        model_cfg.panoptic_head.transformer_decoder.\
            layer_cfg.ffn_cfg.embed_dims = base_channels
        model_cfg.panoptic_head.transformer_decoder.\
            layer_cfg.ffn_cfg.feedforward_channels = base_channels * 8

        return model_cfg

    def test_init(self):
        model_cfg = self._create_model_cfg(
            'mask2former/mask2former_r50_8xb2-lsj-50e_coco-panoptic.py')
        detector = MODELS.build(model_cfg)
        detector.init_weights()
        assert detector.backbone
        assert detector.panoptic_head

    @parameterized.expand([
        ('cpu', 'mask2former/mask2former_r50_8xb2-lsj-50e_coco-panoptic.py'),
        ('cpu', 'mask2former/mask2former_r50_8xb2-lsj-50e_coco.py'),
        ('cuda', 'mask2former/mask2former_r50_8xb2-lsj-50e_coco-panoptic.py'),
        ('cuda', 'mask2former/mask2former_r50_8xb2-lsj-50e_coco.py')
    ])
    def test_forward_loss_mode(self, device, cfg_path):
        print(device, cfg_path)
        with_semantic = 'panoptic' in cfg_path
        model_cfg = self._create_model_cfg(cfg_path)
        detector = MODELS.build(model_cfg)

        if device == 'cuda' and not torch.cuda.is_available():
            return unittest.skip('test requires GPU and torch+cuda')
        detector = detector.to(device)

        packed_inputs = demo_mm_inputs(
            2,
            image_shapes=[(3, 128, 127), (3, 91, 92)],
            sem_seg_output_strides=1,
            with_mask=True,
            with_semantic=with_semantic)
        data = detector.data_preprocessor(packed_inputs, True)
        # Test loss mode
        losses = detector.forward(**data, mode='loss')
        self.assertIsInstance(losses, dict)

    @parameterized.expand([
        ('cpu', 'mask2former/mask2former_r50_8xb2-lsj-50e_coco-panoptic.py'),
        ('cpu', 'mask2former/mask2former_r50_8xb2-lsj-50e_coco.py'),
        ('cuda', 'mask2former/mask2former_r50_8xb2-lsj-50e_coco-panoptic.py'),
        ('cuda', 'mask2former/mask2former_r50_8xb2-lsj-50e_coco.py')
    ])
    def test_forward_predict_mode(self, device, cfg_path):
        with_semantic = 'panoptic' in cfg_path
        model_cfg = self._create_model_cfg(cfg_path)
        detector = MODELS.build(model_cfg)
        if device == 'cuda' and not torch.cuda.is_available():
            return unittest.skip('test requires GPU and torch+cuda')
        detector = detector.to(device)
        packed_inputs = demo_mm_inputs(
            2,
            image_shapes=[(3, 128, 127), (3, 91, 92)],
            sem_seg_output_strides=1,
            with_mask=True,
            with_semantic=with_semantic)
        data = detector.data_preprocessor(packed_inputs, False)
        # Test forward test
        detector.eval()
        with torch.no_grad():
            batch_results = detector.forward(**data, mode='predict')
            self.assertEqual(len(batch_results), 2)
            self.assertIsInstance(batch_results[0], DetDataSample)

    @parameterized.expand([
        ('cpu', 'mask2former/mask2former_r50_8xb2-lsj-50e_coco-panoptic.py'),
        ('cpu', 'mask2former/mask2former_r50_8xb2-lsj-50e_coco.py'),
        ('cuda', 'mask2former/mask2former_r50_8xb2-lsj-50e_coco-panoptic.py'),
        ('cuda', 'mask2former/mask2former_r50_8xb2-lsj-50e_coco.py')
    ])
    def test_forward_tensor_mode(self, device, cfg_path):
        with_semantic = 'panoptic' in cfg_path
        model_cfg = self._create_model_cfg(cfg_path)
        detector = MODELS.build(model_cfg)
        if device == 'cuda' and not torch.cuda.is_available():
            return unittest.skip('test requires GPU and torch+cuda')
        detector = detector.to(device)

        packed_inputs = demo_mm_inputs(
            2, [[3, 128, 128], [3, 125, 130]],
            sem_seg_output_strides=1,
            with_mask=True,
            with_semantic=with_semantic)
        data = detector.data_preprocessor(packed_inputs, False)
        out = detector.forward(**data, mode='tensor')
        self.assertIsInstance(out, tuple)