File size: 6,408 Bytes
6c9ac8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright (c) OpenMMLab. All rights reserved.
import unittest

import pytest
import torch
from mmengine.config import ConfigDict

from mmdet.models.layers import DropBlock
from mmdet.registry import MODELS
from mmdet.utils import register_all_modules

register_all_modules()


def test_dropblock():
    feat = torch.rand(1, 1, 11, 11)
    drop_prob = 1.0
    dropblock = DropBlock(drop_prob, block_size=11, warmup_iters=0)
    out_feat = dropblock(feat)
    assert (out_feat == 0).all() and out_feat.shape == feat.shape
    drop_prob = 0.5
    dropblock = DropBlock(drop_prob, block_size=5, warmup_iters=0)
    out_feat = dropblock(feat)
    assert out_feat.shape == feat.shape

    # drop_prob must be (0,1]
    with pytest.raises(AssertionError):
        DropBlock(1.5, 3)

    # block_size cannot be an even number
    with pytest.raises(AssertionError):
        DropBlock(0.5, 2)

    # warmup_iters cannot be less than 0
    with pytest.raises(AssertionError):
        DropBlock(0.5, 3, -1)


class TestPixelDecoder(unittest.TestCase):

    def test_forward(self):
        base_channels = 64
        pixel_decoder_cfg = ConfigDict(
            dict(
                type='PixelDecoder',
                in_channels=[base_channels * 2**i for i in range(4)],
                feat_channels=base_channels,
                out_channels=base_channels,
                norm_cfg=dict(type='GN', num_groups=32),
                act_cfg=dict(type='ReLU')))
        self = MODELS.build(pixel_decoder_cfg)
        self.init_weights()
        img_metas = [{}, {}]
        feats = [
            torch.rand(
                (2, base_channels * 2**i, 4 * 2**(3 - i), 5 * 2**(3 - i)))
            for i in range(4)
        ]
        mask_feature, memory = self(feats, img_metas)

        assert (memory == feats[-1]).all()
        assert mask_feature.shape == feats[0].shape


class TestTransformerEncoderPixelDecoder(unittest.TestCase):

    def test_forward(self):
        base_channels = 64
        pixel_decoder_cfg = ConfigDict(
            dict(
                type='TransformerEncoderPixelDecoder',
                in_channels=[base_channels * 2**i for i in range(4)],
                feat_channels=base_channels,
                out_channels=base_channels,
                norm_cfg=dict(type='GN', num_groups=32),
                act_cfg=dict(type='ReLU'),
                encoder=dict(  # DetrTransformerEncoder
                    num_layers=6,
                    layer_cfg=dict(  # DetrTransformerEncoderLayer
                        self_attn_cfg=dict(  # MultiheadAttention
                            embed_dims=base_channels,
                            num_heads=8,
                            attn_drop=0.1,
                            proj_drop=0.1,
                            dropout_layer=None,
                            batch_first=True),
                        ffn_cfg=dict(
                            embed_dims=base_channels,
                            feedforward_channels=base_channels * 8,
                            num_fcs=2,
                            act_cfg=dict(type='ReLU', inplace=True),
                            ffn_drop=0.1,
                            dropout_layer=None,
                            add_identity=True),
                        norm_cfg=dict(type='LN'),
                        init_cfg=None),
                    init_cfg=None),
                positional_encoding=dict(
                    num_feats=base_channels // 2, normalize=True)))
        self = MODELS.build(pixel_decoder_cfg)
        self.init_weights()
        img_metas = [{
            'batch_input_shape': (128, 160),
            'img_shape': (120, 160),
        }, {
            'batch_input_shape': (128, 160),
            'img_shape': (125, 160),
        }]
        feats = [
            torch.rand(
                (2, base_channels * 2**i, 4 * 2**(3 - i), 5 * 2**(3 - i)))
            for i in range(4)
        ]
        mask_feature, memory = self(feats, img_metas)

        assert memory.shape[-2:] == feats[-1].shape[-2:]
        assert mask_feature.shape == feats[0].shape


class TestMSDeformAttnPixelDecoder(unittest.TestCase):

    def test_forward(self):
        base_channels = 64
        pixel_decoder_cfg = ConfigDict(
            dict(
                type='MSDeformAttnPixelDecoder',
                in_channels=[base_channels * 2**i for i in range(4)],
                strides=[4, 8, 16, 32],
                feat_channels=base_channels,
                out_channels=base_channels,
                num_outs=3,
                norm_cfg=dict(type='GN', num_groups=32),
                act_cfg=dict(type='ReLU'),
                encoder=dict(  # DeformableDetrTransformerEncoder
                    num_layers=6,
                    layer_cfg=dict(  # DeformableDetrTransformerEncoderLayer
                        self_attn_cfg=dict(  # MultiScaleDeformableAttention
                            embed_dims=base_channels,
                            num_heads=8,
                            num_levels=3,
                            num_points=4,
                            im2col_step=64,
                            dropout=0.0,
                            batch_first=True,
                            norm_cfg=None,
                            init_cfg=None),
                        ffn_cfg=dict(
                            embed_dims=base_channels,
                            feedforward_channels=base_channels * 4,
                            num_fcs=2,
                            ffn_drop=0.0,
                            act_cfg=dict(type='ReLU', inplace=True))),
                    init_cfg=None),
                positional_encoding=dict(
                    num_feats=base_channels // 2, normalize=True),
                init_cfg=None))
        self = MODELS.build(pixel_decoder_cfg)
        self.init_weights()
        feats = [
            torch.rand(
                (2, base_channels * 2**i, 4 * 2**(3 - i), 5 * 2**(3 - i)))
            for i in range(4)
        ]
        mask_feature, multi_scale_features = self(feats)

        assert mask_feature.shape == feats[0].shape
        assert len(multi_scale_features) == 3
        multi_scale_features = multi_scale_features[::-1]
        for i in range(3):
            assert multi_scale_features[i].shape[-2:] == feats[i +
                                                               1].shape[-2:]