File size: 6,181 Bytes
6c9ac8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from unittest import TestCase

import numpy as np
import pytest
import torch
from mmengine.structures import InstanceData, PixelData

from mmdet.structures import DetDataSample


def _equal(a, b):
    if isinstance(a, (torch.Tensor, np.ndarray)):
        return (a == b).all()
    else:
        return a == b


class TestDetDataSample(TestCase):

    def test_init(self):
        meta_info = dict(
            img_size=[256, 256],
            scale_factor=np.array([1.5, 1.5]),
            img_shape=torch.rand(4))

        det_data_sample = DetDataSample(metainfo=meta_info)
        assert 'img_size' in det_data_sample
        assert det_data_sample.img_size == [256, 256]
        assert det_data_sample.get('img_size') == [256, 256]

    def test_setter(self):
        det_data_sample = DetDataSample()
        # test gt_instances
        gt_instances_data = dict(
            bboxes=torch.rand(4, 4),
            labels=torch.rand(4),
            masks=np.random.rand(4, 2, 2))
        gt_instances = InstanceData(**gt_instances_data)
        det_data_sample.gt_instances = gt_instances
        assert 'gt_instances' in det_data_sample
        assert _equal(det_data_sample.gt_instances.bboxes,
                      gt_instances_data['bboxes'])
        assert _equal(det_data_sample.gt_instances.labels,
                      gt_instances_data['labels'])
        assert _equal(det_data_sample.gt_instances.masks,
                      gt_instances_data['masks'])

        # test pred_instances
        pred_instances_data = dict(
            bboxes=torch.rand(2, 4),
            labels=torch.rand(2),
            masks=np.random.rand(2, 2, 2))
        pred_instances = InstanceData(**pred_instances_data)
        det_data_sample.pred_instances = pred_instances
        assert 'pred_instances' in det_data_sample
        assert _equal(det_data_sample.pred_instances.bboxes,
                      pred_instances_data['bboxes'])
        assert _equal(det_data_sample.pred_instances.labels,
                      pred_instances_data['labels'])
        assert _equal(det_data_sample.pred_instances.masks,
                      pred_instances_data['masks'])

        # test proposals
        proposals_data = dict(bboxes=torch.rand(4, 4), labels=torch.rand(4))
        proposals = InstanceData(**proposals_data)
        det_data_sample.proposals = proposals
        assert 'proposals' in det_data_sample
        assert _equal(det_data_sample.proposals.bboxes,
                      proposals_data['bboxes'])
        assert _equal(det_data_sample.proposals.labels,
                      proposals_data['labels'])

        # test ignored_instances
        ignored_instances_data = dict(
            bboxes=torch.rand(4, 4), labels=torch.rand(4))
        ignored_instances = InstanceData(**ignored_instances_data)
        det_data_sample.ignored_instances = ignored_instances
        assert 'ignored_instances' in det_data_sample
        assert _equal(det_data_sample.ignored_instances.bboxes,
                      ignored_instances_data['bboxes'])
        assert _equal(det_data_sample.ignored_instances.labels,
                      ignored_instances_data['labels'])

        # test gt_panoptic_seg
        gt_panoptic_seg_data = dict(panoptic_seg=torch.rand(5, 4))
        gt_panoptic_seg = PixelData(**gt_panoptic_seg_data)
        det_data_sample.gt_panoptic_seg = gt_panoptic_seg
        assert 'gt_panoptic_seg' in det_data_sample
        assert _equal(det_data_sample.gt_panoptic_seg.panoptic_seg,
                      gt_panoptic_seg_data['panoptic_seg'])

        # test pred_panoptic_seg
        pred_panoptic_seg_data = dict(panoptic_seg=torch.rand(5, 4))
        pred_panoptic_seg = PixelData(**pred_panoptic_seg_data)
        det_data_sample.pred_panoptic_seg = pred_panoptic_seg
        assert 'pred_panoptic_seg' in det_data_sample
        assert _equal(det_data_sample.pred_panoptic_seg.panoptic_seg,
                      pred_panoptic_seg_data['panoptic_seg'])

        # test gt_sem_seg
        gt_segm_seg_data = dict(segm_seg=torch.rand(5, 4, 2))
        gt_segm_seg = PixelData(**gt_segm_seg_data)
        det_data_sample.gt_segm_seg = gt_segm_seg
        assert 'gt_segm_seg' in det_data_sample
        assert _equal(det_data_sample.gt_segm_seg.segm_seg,
                      gt_segm_seg_data['segm_seg'])

        # test pred_segm_seg
        pred_segm_seg_data = dict(segm_seg=torch.rand(5, 4, 2))
        pred_segm_seg = PixelData(**pred_segm_seg_data)
        det_data_sample.pred_segm_seg = pred_segm_seg
        assert 'pred_segm_seg' in det_data_sample
        assert _equal(det_data_sample.pred_segm_seg.segm_seg,
                      pred_segm_seg_data['segm_seg'])

        # test type error
        with pytest.raises(AssertionError):
            det_data_sample.pred_instances = torch.rand(2, 4)

        with pytest.raises(AssertionError):
            det_data_sample.pred_panoptic_seg = torch.rand(2, 4)

        with pytest.raises(AssertionError):
            det_data_sample.pred_sem_seg = torch.rand(2, 4)

    def test_deleter(self):
        gt_instances_data = dict(
            bboxes=torch.rand(4, 4),
            labels=torch.rand(4),
            masks=np.random.rand(4, 2, 2))

        det_data_sample = DetDataSample()
        gt_instances = InstanceData(data=gt_instances_data)
        det_data_sample.gt_instances = gt_instances
        assert 'gt_instances' in det_data_sample
        del det_data_sample.gt_instances
        assert 'gt_instances' not in det_data_sample

        pred_panoptic_seg_data = torch.rand(5, 4)
        pred_panoptic_seg = PixelData(data=pred_panoptic_seg_data)
        det_data_sample.pred_panoptic_seg = pred_panoptic_seg
        assert 'pred_panoptic_seg' in det_data_sample
        del det_data_sample.pred_panoptic_seg
        assert 'pred_panoptic_seg' not in det_data_sample

        pred_segm_seg_data = dict(segm_seg=torch.rand(5, 4, 2))
        pred_segm_seg = PixelData(**pred_segm_seg_data)
        det_data_sample.pred_segm_seg = pred_segm_seg
        assert 'pred_segm_seg' in det_data_sample
        del det_data_sample.pred_segm_seg
        assert 'pred_segm_seg' not in det_data_sample