File size: 11,696 Bytes
6c9ac8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import copy
import os
import tempfile
import unittest

import torch
from mmengine import Config, MMLogger
from mmengine.dataset import Compose
from mmengine.model import BaseModel
from torch.utils.data import Dataset

from mmdet.registry import DATASETS, MODELS
from mmdet.utils import register_all_modules
from mmdet.utils.benchmark import (DataLoaderBenchmark, DatasetBenchmark,
                                   InferenceBenchmark)


@MODELS.register_module()
class ToyDetector(BaseModel):

    def __init__(self, *args, **kwargs):
        super().__init__()

    def forward(self, *args, **kwargs):
        pass


@DATASETS.register_module()
class ToyDataset(Dataset):
    METAINFO = dict()  # type: ignore
    data = torch.randn(12, 2)
    label = torch.ones(12)

    def __init__(self):
        self.pipeline = Compose([lambda x: x])

    def __len__(self):
        return self.data.size(0)

    def get_data_info(self, index):
        return dict(inputs=self.data[index], data_sample=self.label[index])

    def __getitem__(self, index):
        return dict(inputs=self.data[index], data_sample=self.label[index])


@DATASETS.register_module()
class ToyFullInitDataset(Dataset):
    METAINFO = dict()  # type: ignore
    data = torch.randn(12, 2)
    label = torch.ones(12)

    def __init__(self):
        self.pipeline = Compose([lambda x: x])

    def __len__(self):
        return self.data.size(0)

    def get_data_info(self, index):
        return dict(inputs=self.data[index], data_sample=self.label[index])

    def full_init(self):
        pass

    def __getitem__(self, index):
        return dict(inputs=self.data[index], data_sample=self.label[index])


class TestInferenceBenchmark(unittest.TestCase):

    def setUp(self) -> None:
        register_all_modules()

        self.cfg = Config(
            dict(
                model=dict(type='ToyDetector'),
                test_dataloader=dict(
                    dataset=dict(type='ToyDataset'),
                    sampler=dict(type='DefaultSampler', shuffle=False),
                    batch_size=3,
                    num_workers=1),
                env_cfg=dict(dist_cfg=dict(backend='nccl'))))
        self.max_iter = 10
        self.log_interval = 5

    @unittest.skipIf(not torch.cuda.is_available(),
                     'test requires GPU and torch+cuda')
    def test_init_and_run(self):
        checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')
        torch.save(ToyDetector().state_dict(), checkpoint_path)

        cfg = copy.deepcopy(self.cfg)
        inference_benchmark = InferenceBenchmark(cfg, checkpoint_path, False,
                                                 False, self.max_iter,
                                                 self.log_interval)
        results = inference_benchmark.run()

        self.assertTrue(isinstance(results, dict))
        self.assertTrue('avg_fps' in results)
        self.assertTrue('fps_list' in results)
        self.assertEqual(len(results['fps_list']), 1)
        self.assertTrue(inference_benchmark.data_loader.num_workers == 0)
        self.assertTrue(inference_benchmark.data_loader.batch_size == 1)

        results = inference_benchmark.run(1)
        self.assertTrue('avg_fps' in results)
        self.assertTrue('fps_list' in results)
        self.assertEqual(len(results['fps_list']), 1)
        self.assertTrue(inference_benchmark.data_loader.num_workers == 0)
        self.assertTrue(inference_benchmark.data_loader.batch_size == 1)

        # test repeat
        results = inference_benchmark.run(3)
        self.assertTrue('avg_fps' in results)
        self.assertTrue('fps_list' in results)
        self.assertEqual(len(results['fps_list']), 3)

        # test cudnn_benchmark
        cfg = copy.deepcopy(self.cfg)
        cfg.env_cfg.cudnn_benchmark = True
        inference_benchmark = InferenceBenchmark(cfg, checkpoint_path, False,
                                                 False, self.max_iter,
                                                 self.log_interval)
        inference_benchmark.run(1)

        # test mp_cfg
        cfg = copy.deepcopy(self.cfg)
        cfg.env_cfg.cudnn_benchmark = True
        cfg.env_cfg.mp_cfg = {
            'mp_start_method': 'fork',
            'opencv_num_threads': 1
        }
        inference_benchmark = InferenceBenchmark(cfg, checkpoint_path, False,
                                                 False, self.max_iter,
                                                 self.log_interval)
        inference_benchmark.run(1)

        # test fp16
        cfg = copy.deepcopy(self.cfg)
        cfg.fp16 = True
        inference_benchmark = InferenceBenchmark(cfg, checkpoint_path, False,
                                                 False, self.max_iter,
                                                 self.log_interval)
        inference_benchmark.run(1)

        # test logger
        logger = MMLogger.get_instance(
            'mmdet', log_file='temp.log', log_level='INFO')
        inference_benchmark = InferenceBenchmark(
            cfg,
            checkpoint_path,
            False,
            False,
            self.max_iter,
            self.log_interval,
            logger=logger)
        inference_benchmark.run(1)
        self.assertTrue(os.path.exists('temp.log'))

        os.remove(checkpoint_path)
        os.remove('temp.log')


class TestDataLoaderBenchmark(unittest.TestCase):

    def setUp(self) -> None:
        register_all_modules()

        self.cfg = Config(
            dict(
                model=dict(type='ToyDetector'),
                train_dataloader=dict(
                    dataset=dict(type='ToyDataset'),
                    sampler=dict(type='DefaultSampler', shuffle=True),
                    batch_size=2,
                    num_workers=1),
                val_dataloader=dict(
                    dataset=dict(type='ToyDataset'),
                    sampler=dict(type='DefaultSampler', shuffle=False),
                    batch_size=1,
                    num_workers=2),
                test_dataloader=dict(
                    dataset=dict(type='ToyDataset'),
                    sampler=dict(type='DefaultSampler', shuffle=False),
                    batch_size=3,
                    num_workers=1),
                env_cfg=dict(dist_cfg=dict(backend='nccl'))))
        self.max_iter = 5
        self.log_interval = 1
        self.num_warmup = 1

    def test_init_and_run(self):
        cfg = copy.deepcopy(self.cfg)
        dataloader_benchmark = DataLoaderBenchmark(cfg, False, 'train',
                                                   self.max_iter,
                                                   self.log_interval,
                                                   self.num_warmup)
        results = dataloader_benchmark.run(1)
        self.assertTrue('avg_fps' in results)
        self.assertTrue('fps_list' in results)
        self.assertEqual(len(results['fps_list']), 1)
        self.assertTrue(dataloader_benchmark.data_loader.num_workers == 1)
        self.assertTrue(dataloader_benchmark.data_loader.batch_size == 2)

        # test repeat
        results = dataloader_benchmark.run(3)
        self.assertTrue('avg_fps' in results)
        self.assertTrue('fps_list' in results)
        self.assertEqual(len(results['fps_list']), 3)

        # test dataset_type input parameters error
        with self.assertRaises(AssertionError):
            DataLoaderBenchmark(cfg, False, 'training', self.max_iter,
                                self.log_interval, self.num_warmup)

        dataloader_benchmark = DataLoaderBenchmark(cfg, False, 'val',
                                                   self.max_iter,
                                                   self.log_interval,
                                                   self.num_warmup)
        self.assertTrue(dataloader_benchmark.data_loader.num_workers == 2)
        self.assertTrue(dataloader_benchmark.data_loader.batch_size == 1)

        dataloader_benchmark = DataLoaderBenchmark(cfg, False, 'test',
                                                   self.max_iter,
                                                   self.log_interval,
                                                   self.num_warmup)
        self.assertTrue(dataloader_benchmark.data_loader.num_workers == 1)
        self.assertTrue(dataloader_benchmark.data_loader.batch_size == 3)

        # test mp_cfg
        cfg = copy.deepcopy(self.cfg)
        cfg.env_cfg.mp_cfg = {
            'mp_start_method': 'fork',
            'opencv_num_threads': 1
        }
        dataloader_benchmark = DataLoaderBenchmark(cfg, False, 'train',
                                                   self.max_iter,
                                                   self.log_interval,
                                                   self.num_warmup)
        dataloader_benchmark.run(1)


class TestDatasetBenchmark(unittest.TestCase):

    def setUp(self) -> None:
        register_all_modules()

        self.cfg = Config(
            dict(
                model=dict(type='ToyDetector'),
                train_dataloader=dict(
                    dataset=dict(type='ToyDataset'),
                    sampler=dict(type='DefaultSampler', shuffle=True),
                    batch_size=2,
                    num_workers=1),
                val_dataloader=dict(
                    dataset=dict(type='ToyDataset'),
                    sampler=dict(type='DefaultSampler', shuffle=False),
                    batch_size=1,
                    num_workers=2),
                test_dataloader=dict(
                    dataset=dict(type='ToyDataset'),
                    sampler=dict(type='DefaultSampler', shuffle=False),
                    batch_size=3,
                    num_workers=1)))
        self.max_iter = 5
        self.log_interval = 1
        self.num_warmup = 1

    def test_init_and_run(self):
        cfg = copy.deepcopy(self.cfg)
        dataset_benchmark = DatasetBenchmark(cfg, 'train', self.max_iter,
                                             self.log_interval,
                                             self.num_warmup)
        results = dataset_benchmark.run(1)
        self.assertTrue('avg_fps' in results)
        self.assertTrue('fps_list' in results)
        self.assertEqual(len(results['fps_list']), 1)

        # test repeat
        results = dataset_benchmark.run(3)
        self.assertTrue('avg_fps' in results)
        self.assertTrue('fps_list' in results)
        self.assertEqual(len(results['fps_list']), 3)

        # test test dataset
        dataset_benchmark = DatasetBenchmark(cfg, 'test', self.max_iter,
                                             self.log_interval,
                                             self.num_warmup)
        dataset_benchmark.run(1)

        # test val dataset
        dataset_benchmark = DatasetBenchmark(cfg, 'val', self.max_iter,
                                             self.log_interval,
                                             self.num_warmup)
        dataset_benchmark.run(1)

        # test dataset_type input parameters error
        with self.assertRaises(AssertionError):
            DatasetBenchmark(cfg, 'training', self.max_iter, self.log_interval,
                             self.num_warmup)

        # test full_init
        cfg = copy.deepcopy(self.cfg)
        cfg.test_dataloader.dataset = dict(type='ToyFullInitDataset')
        dataset_benchmark = DatasetBenchmark(cfg, 'train', self.max_iter,
                                             self.log_interval,
                                             self.num_warmup)
        dataset_benchmark.run(1)