|
_base_ = '../common/ms-90k_coco.py' |
|
|
|
|
|
model = dict( |
|
type='Detectron2Wrapper', |
|
bgr_to_rgb=False, |
|
detector=dict( |
|
|
|
|
|
|
|
meta_architecture='GeneralizedRCNN', |
|
|
|
|
|
|
|
weights='detectron2://ImageNetPretrained/MSRA/R-50.pkl', |
|
mask_on=False, |
|
pixel_mean=[103.530, 116.280, 123.675], |
|
pixel_std=[1.0, 1.0, 1.0], |
|
backbone=dict(name='build_resnet_fpn_backbone', freeze_at=2), |
|
resnets=dict( |
|
depth=50, |
|
out_features=['res2', 'res3', 'res4', 'res5'], |
|
num_groups=1, |
|
norm='FrozenBN'), |
|
fpn=dict( |
|
in_features=['res2', 'res3', 'res4', 'res5'], out_channels=256), |
|
anchor_generator=dict( |
|
name='DefaultAnchorGenerator', |
|
sizes=[[32], [64], [128], [256], [512]], |
|
aspect_ratios=[[0.5, 1.0, 2.0]], |
|
angles=[[-90, 0, 90]]), |
|
proposal_generator=dict(name='RPN'), |
|
rpn=dict( |
|
head_name='StandardRPNHead', |
|
in_features=['p2', 'p3', 'p4', 'p5', 'p6'], |
|
iou_thresholds=[0.3, 0.7], |
|
iou_labels=[0, -1, 1], |
|
batch_size_per_image=256, |
|
positive_fraction=0.5, |
|
bbox_reg_loss_type='smooth_l1', |
|
bbox_reg_loss_weight=1.0, |
|
bbox_reg_weights=(1.0, 1.0, 1.0, 1.0), |
|
smooth_l1_beta=0.0, |
|
loss_weight=1.0, |
|
boundary_thresh=-1, |
|
pre_nms_topk_train=2000, |
|
post_nms_topk_train=1000, |
|
pre_nms_topk_test=1000, |
|
post_nms_topk_test=1000, |
|
nms_thresh=0.7, |
|
conv_dims=[-1]), |
|
roi_heads=dict( |
|
name='StandardROIHeads', |
|
num_classes=80, |
|
in_features=['p2', 'p3', 'p4', 'p5'], |
|
iou_thresholds=[0.5], |
|
iou_labels=[0, 1], |
|
batch_size_per_image=512, |
|
positive_fraction=0.25, |
|
score_thresh_test=0.05, |
|
nms_thresh_test=0.5, |
|
proposal_append_gt=True), |
|
roi_box_head=dict( |
|
name='FastRCNNConvFCHead', |
|
num_fc=2, |
|
fc_dim=1024, |
|
conv_dim=256, |
|
pooler_type='ROIAlignV2', |
|
pooler_resolution=7, |
|
pooler_sampling_ratio=0, |
|
bbox_reg_loss_type='smooth_l1', |
|
bbox_reg_loss_weight=1.0, |
|
bbox_reg_weights=(10.0, 10.0, 5.0, 5.0), |
|
smooth_l1_beta=0.0, |
|
cls_agnostic_bbox_reg=False))) |
|
|