MMDet / mmdetection /configs /misc /d2_faster-rcnn_r50-caffe_fpn_ms-90k_coco.py
Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
_base_ = '../common/ms-90k_coco.py'
# model settings
model = dict(
type='Detectron2Wrapper',
bgr_to_rgb=False,
detector=dict(
# The settings in `d2_detector` will merged into default settings
# in detectron2. More details please refer to
# https://github.com/facebookresearch/detectron2/blob/main/detectron2/config/defaults.py # noqa
meta_architecture='GeneralizedRCNN',
# If you want to finetune the detector, you can use the
# checkpoint released by detectron2, for example:
# weights='detectron2://COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/model_final_b275ba.pkl' # noqa
weights='detectron2://ImageNetPretrained/MSRA/R-50.pkl',
mask_on=False,
pixel_mean=[103.530, 116.280, 123.675],
pixel_std=[1.0, 1.0, 1.0],
backbone=dict(name='build_resnet_fpn_backbone', freeze_at=2),
resnets=dict(
depth=50,
out_features=['res2', 'res3', 'res4', 'res5'],
num_groups=1,
norm='FrozenBN'),
fpn=dict(
in_features=['res2', 'res3', 'res4', 'res5'], out_channels=256),
anchor_generator=dict(
name='DefaultAnchorGenerator',
sizes=[[32], [64], [128], [256], [512]],
aspect_ratios=[[0.5, 1.0, 2.0]],
angles=[[-90, 0, 90]]),
proposal_generator=dict(name='RPN'),
rpn=dict(
head_name='StandardRPNHead',
in_features=['p2', 'p3', 'p4', 'p5', 'p6'],
iou_thresholds=[0.3, 0.7],
iou_labels=[0, -1, 1],
batch_size_per_image=256,
positive_fraction=0.5,
bbox_reg_loss_type='smooth_l1',
bbox_reg_loss_weight=1.0,
bbox_reg_weights=(1.0, 1.0, 1.0, 1.0),
smooth_l1_beta=0.0,
loss_weight=1.0,
boundary_thresh=-1,
pre_nms_topk_train=2000,
post_nms_topk_train=1000,
pre_nms_topk_test=1000,
post_nms_topk_test=1000,
nms_thresh=0.7,
conv_dims=[-1]),
roi_heads=dict(
name='StandardROIHeads',
num_classes=80,
in_features=['p2', 'p3', 'p4', 'p5'],
iou_thresholds=[0.5],
iou_labels=[0, 1],
batch_size_per_image=512,
positive_fraction=0.25,
score_thresh_test=0.05,
nms_thresh_test=0.5,
proposal_append_gt=True),
roi_box_head=dict(
name='FastRCNNConvFCHead',
num_fc=2,
fc_dim=1024,
conv_dim=256,
pooler_type='ROIAlignV2',
pooler_resolution=7,
pooler_sampling_ratio=0,
bbox_reg_loss_type='smooth_l1',
bbox_reg_loss_weight=1.0,
bbox_reg_weights=(10.0, 10.0, 5.0, 5.0),
smooth_l1_beta=0.0,
cls_agnostic_bbox_reg=False)))