MMDet / mmdetection /configs /misc /d2_retinanet_r50-caffe_fpn_ms-90k_coco.py
Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
_base_ = '../common/ms-90k_coco.py'
# model settings
model = dict(
type='Detectron2Wrapper',
bgr_to_rgb=False,
detector=dict(
# The settings in `d2_detector` will merged into default settings
# in detectron2. More details please refer to
# https://github.com/facebookresearch/detectron2/blob/main/detectron2/config/defaults.py # noqa
meta_architecture='RetinaNet',
# If you want to finetune the detector, you can use the
# checkpoint released by detectron2, for example:
# weights='detectron2://COCO-Detection/retinanet_R_50_FPN_1x/190397773/model_final_bfca0b.pkl' # noqa
weights='detectron2://ImageNetPretrained/MSRA/R-50.pkl',
mask_on=False,
pixel_mean=[103.530, 116.280, 123.675],
pixel_std=[1.0, 1.0, 1.0],
backbone=dict(name='build_retinanet_resnet_fpn_backbone', freeze_at=2),
resnets=dict(
depth=50,
out_features=['res3', 'res4', 'res5'],
num_groups=1,
norm='FrozenBN'),
fpn=dict(in_features=['res3', 'res4', 'res5'], out_channels=256),
anchor_generator=dict(
name='DefaultAnchorGenerator',
sizes=[[x, x * 2**(1.0 / 3), x * 2**(2.0 / 3)]
for x in [32, 64, 128, 256, 512]],
aspect_ratios=[[0.5, 1.0, 2.0]],
angles=[[-90, 0, 90]]),
retinanet=dict(
num_classes=80,
in_features=['p3', 'p4', 'p5', 'p6', 'p7'],
num_convs=4,
iou_thresholds=[0.4, 0.5],
iou_labels=[0, -1, 1],
bbox_reg_weights=(1.0, 1.0, 1.0, 1.0),
bbox_reg_loss_type='smooth_l1',
smooth_l1_loss_beta=0.0,
focal_loss_gamma=2.0,
focal_loss_alpha=0.25,
prior_prob=0.01,
score_thresh_test=0.05,
topk_candidates_test=1000,
nms_thresh_test=0.5)))
optim_wrapper = dict(optimizer=dict(lr=0.01))