|
_base_ = '../common/ms-90k_coco.py' |
|
|
|
|
|
model = dict( |
|
type='Detectron2Wrapper', |
|
bgr_to_rgb=False, |
|
detector=dict( |
|
|
|
|
|
|
|
meta_architecture='RetinaNet', |
|
|
|
|
|
|
|
weights='detectron2://ImageNetPretrained/MSRA/R-50.pkl', |
|
mask_on=False, |
|
pixel_mean=[103.530, 116.280, 123.675], |
|
pixel_std=[1.0, 1.0, 1.0], |
|
backbone=dict(name='build_retinanet_resnet_fpn_backbone', freeze_at=2), |
|
resnets=dict( |
|
depth=50, |
|
out_features=['res3', 'res4', 'res5'], |
|
num_groups=1, |
|
norm='FrozenBN'), |
|
fpn=dict(in_features=['res3', 'res4', 'res5'], out_channels=256), |
|
anchor_generator=dict( |
|
name='DefaultAnchorGenerator', |
|
sizes=[[x, x * 2**(1.0 / 3), x * 2**(2.0 / 3)] |
|
for x in [32, 64, 128, 256, 512]], |
|
aspect_ratios=[[0.5, 1.0, 2.0]], |
|
angles=[[-90, 0, 90]]), |
|
retinanet=dict( |
|
num_classes=80, |
|
in_features=['p3', 'p4', 'p5', 'p6', 'p7'], |
|
num_convs=4, |
|
iou_thresholds=[0.4, 0.5], |
|
iou_labels=[0, -1, 1], |
|
bbox_reg_weights=(1.0, 1.0, 1.0, 1.0), |
|
bbox_reg_loss_type='smooth_l1', |
|
smooth_l1_loss_beta=0.0, |
|
focal_loss_gamma=2.0, |
|
focal_loss_alpha=0.25, |
|
prior_prob=0.01, |
|
score_thresh_test=0.05, |
|
topk_candidates_test=1000, |
|
nms_thresh_test=0.5))) |
|
|
|
optim_wrapper = dict(optimizer=dict(lr=0.01)) |
|
|