|
|
|
from typing import List, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from mmcv.cnn.bricks import Swish, build_norm_layer |
|
from mmengine.model import bias_init_with_prob |
|
from torch import Tensor |
|
|
|
from mmdet.models.dense_heads.anchor_head import AnchorHead |
|
from mmdet.models.utils import images_to_levels, multi_apply |
|
from mmdet.registry import MODELS |
|
from mmdet.structures.bbox import cat_boxes, get_box_tensor |
|
from mmdet.utils import (InstanceList, OptConfigType, OptInstanceList, |
|
OptMultiConfig, reduce_mean) |
|
from .utils import DepthWiseConvBlock |
|
|
|
|
|
@MODELS.register_module() |
|
class EfficientDetSepBNHead(AnchorHead): |
|
"""EfficientDetHead with separate BN. |
|
|
|
num_classes (int): Number of categories num_ins (int): Number of the input |
|
feature map. in_channels (int): Number of channels in the input feature |
|
map. feat_channels (int): Number of hidden channels. stacked_convs (int): |
|
Number of repetitions of conv norm_cfg (dict): Config dict for |
|
normalization layer. anchor_generator (dict): Config dict for anchor |
|
generator bbox_coder (dict): Config of bounding box coder. loss_cls (dict): |
|
Config of classification loss. loss_bbox (dict): Config of localization |
|
loss. train_cfg (dict): Training config of anchor head. test_cfg (dict): |
|
Testing config of anchor head. init_cfg (dict or list[dict], optional): |
|
Initialization config dict. |
|
""" |
|
|
|
def __init__(self, |
|
num_classes: int, |
|
num_ins: int, |
|
in_channels: int, |
|
feat_channels: int, |
|
stacked_convs: int = 3, |
|
norm_cfg: OptConfigType = dict( |
|
type='BN', momentum=1e-2, eps=1e-3), |
|
init_cfg: OptMultiConfig = None, |
|
**kwargs) -> None: |
|
self.num_ins = num_ins |
|
self.stacked_convs = stacked_convs |
|
self.norm_cfg = norm_cfg |
|
super().__init__( |
|
num_classes=num_classes, |
|
in_channels=in_channels, |
|
feat_channels=feat_channels, |
|
init_cfg=init_cfg, |
|
**kwargs) |
|
|
|
def _init_layers(self) -> None: |
|
"""Initialize layers of the head.""" |
|
self.reg_conv_list = nn.ModuleList() |
|
self.cls_conv_list = nn.ModuleList() |
|
for i in range(self.stacked_convs): |
|
channels = self.in_channels if i == 0 else self.feat_channels |
|
self.reg_conv_list.append( |
|
DepthWiseConvBlock( |
|
channels, self.feat_channels, apply_norm=False)) |
|
self.cls_conv_list.append( |
|
DepthWiseConvBlock( |
|
channels, self.feat_channels, apply_norm=False)) |
|
|
|
self.reg_bn_list = nn.ModuleList([ |
|
nn.ModuleList([ |
|
build_norm_layer( |
|
self.norm_cfg, num_features=self.feat_channels)[1] |
|
for j in range(self.num_ins) |
|
]) for i in range(self.stacked_convs) |
|
]) |
|
|
|
self.cls_bn_list = nn.ModuleList([ |
|
nn.ModuleList([ |
|
build_norm_layer( |
|
self.norm_cfg, num_features=self.feat_channels)[1] |
|
for j in range(self.num_ins) |
|
]) for i in range(self.stacked_convs) |
|
]) |
|
|
|
self.cls_header = DepthWiseConvBlock( |
|
self.in_channels, |
|
self.num_base_priors * self.cls_out_channels, |
|
apply_norm=False) |
|
self.reg_header = DepthWiseConvBlock( |
|
self.in_channels, self.num_base_priors * 4, apply_norm=False) |
|
self.swish = Swish() |
|
|
|
def init_weights(self) -> None: |
|
"""Initialize weights of the head.""" |
|
for m in self.reg_conv_list: |
|
nn.init.constant_(m.pointwise_conv.bias, 0.0) |
|
for m in self.cls_conv_list: |
|
nn.init.constant_(m.pointwise_conv.bias, 0.0) |
|
bias_cls = bias_init_with_prob(0.01) |
|
nn.init.constant_(self.cls_header.pointwise_conv.bias, bias_cls) |
|
nn.init.constant_(self.reg_header.pointwise_conv.bias, 0.0) |
|
|
|
def forward_single_bbox(self, feat: Tensor, level_id: int, |
|
i: int) -> Tensor: |
|
conv_op = self.reg_conv_list[i] |
|
bn = self.reg_bn_list[i][level_id] |
|
|
|
feat = conv_op(feat) |
|
feat = bn(feat) |
|
feat = self.swish(feat) |
|
|
|
return feat |
|
|
|
def forward_single_cls(self, feat: Tensor, level_id: int, |
|
i: int) -> Tensor: |
|
conv_op = self.cls_conv_list[i] |
|
bn = self.cls_bn_list[i][level_id] |
|
|
|
feat = conv_op(feat) |
|
feat = bn(feat) |
|
feat = self.swish(feat) |
|
|
|
return feat |
|
|
|
def forward(self, feats: Tuple[Tensor]) -> tuple: |
|
cls_scores = [] |
|
bbox_preds = [] |
|
for level_id in range(self.num_ins): |
|
feat = feats[level_id] |
|
for i in range(self.stacked_convs): |
|
feat = self.forward_single_bbox(feat, level_id, i) |
|
bbox_pred = self.reg_header(feat) |
|
bbox_preds.append(bbox_pred) |
|
for level_id in range(self.num_ins): |
|
feat = feats[level_id] |
|
for i in range(self.stacked_convs): |
|
feat = self.forward_single_cls(feat, level_id, i) |
|
cls_score = self.cls_header(feat) |
|
cls_scores.append(cls_score) |
|
|
|
return cls_scores, bbox_preds |
|
|
|
def loss_by_feat( |
|
self, |
|
cls_scores: List[Tensor], |
|
bbox_preds: List[Tensor], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None) -> dict: |
|
"""Calculate the loss based on the features extracted by the detection |
|
head. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Box scores for each scale level |
|
has shape (N, num_anchors * num_classes, H, W). |
|
bbox_preds (list[Tensor]): Box energies / deltas for each scale |
|
level with shape (N, num_anchors * 4, H, W). |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
|
|
Returns: |
|
dict: A dictionary of loss components. |
|
""" |
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] |
|
assert len(featmap_sizes) == self.prior_generator.num_levels |
|
|
|
device = cls_scores[0].device |
|
|
|
anchor_list, valid_flag_list = self.get_anchors( |
|
featmap_sizes, batch_img_metas, device=device) |
|
cls_reg_targets = self.get_targets( |
|
anchor_list, |
|
valid_flag_list, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
batch_gt_instances_ignore=batch_gt_instances_ignore) |
|
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, |
|
avg_factor) = cls_reg_targets |
|
|
|
|
|
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] |
|
|
|
concat_anchor_list = [] |
|
for i in range(len(anchor_list)): |
|
concat_anchor_list.append(cat_boxes(anchor_list[i])) |
|
all_anchor_list = images_to_levels(concat_anchor_list, |
|
num_level_anchors) |
|
|
|
avg_factor = reduce_mean( |
|
torch.tensor(avg_factor, dtype=torch.float, device=device)).item() |
|
avg_factor = max(avg_factor, 1.0) |
|
losses_cls, losses_bbox = multi_apply( |
|
self.loss_by_feat_single, |
|
cls_scores, |
|
bbox_preds, |
|
all_anchor_list, |
|
labels_list, |
|
label_weights_list, |
|
bbox_targets_list, |
|
bbox_weights_list, |
|
avg_factor=avg_factor) |
|
return dict(loss_cls=losses_cls, loss_bbox=losses_bbox) |
|
|
|
def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor, |
|
anchors: Tensor, labels: Tensor, |
|
label_weights: Tensor, bbox_targets: Tensor, |
|
bbox_weights: Tensor, avg_factor: int) -> tuple: |
|
"""Calculate the loss of a single scale level based on the features |
|
extracted by the detection head. |
|
|
|
Args: |
|
cls_score (Tensor): Box scores for each scale level |
|
Has shape (N, num_anchors * num_classes, H, W). |
|
bbox_pred (Tensor): Box energies / deltas for each scale |
|
level with shape (N, num_anchors * 4, H, W). |
|
anchors (Tensor): Box reference for each scale level with shape |
|
(N, num_total_anchors, 4). |
|
labels (Tensor): Labels of each anchors with shape |
|
(N, num_total_anchors). |
|
label_weights (Tensor): Label weights of each anchor with shape |
|
(N, num_total_anchors) |
|
bbox_targets (Tensor): BBox regression targets of each anchor |
|
weight shape (N, num_total_anchors, 4). |
|
bbox_weights (Tensor): BBox regression loss weights of each anchor |
|
with shape (N, num_total_anchors, 4). |
|
avg_factor (int): Average factor that is used to average the loss. |
|
|
|
Returns: |
|
tuple: loss components. |
|
""" |
|
|
|
|
|
labels = labels.reshape(-1) |
|
label_weights = label_weights.reshape(-1) |
|
cls_score = cls_score.permute(0, 2, 3, |
|
1).reshape(-1, self.cls_out_channels) |
|
loss_cls = self.loss_cls( |
|
cls_score, labels, label_weights, avg_factor=avg_factor) |
|
|
|
target_dim = bbox_targets.size(-1) |
|
bbox_targets = bbox_targets.reshape(-1, target_dim) |
|
bbox_weights = bbox_weights.reshape(-1, target_dim) |
|
bbox_pred = bbox_pred.permute(0, 2, 3, |
|
1).reshape(-1, |
|
self.bbox_coder.encode_size) |
|
if self.reg_decoded_bbox: |
|
|
|
|
|
|
|
anchors = anchors.reshape(-1, anchors.size(-1)) |
|
bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) |
|
bbox_pred = get_box_tensor(bbox_pred) |
|
loss_bbox = self.loss_bbox( |
|
bbox_pred, bbox_targets, bbox_weights, avg_factor=avg_factor * 4) |
|
return loss_cls, loss_bbox |
|
|