Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
# Copyright (c) Tianheng Cheng and its affiliates. All Rights Reserved
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.model.weight_init import caffe2_xavier_init, kaiming_init
from torch.nn import init
from mmdet.registry import MODELS
def _make_stack_3x3_convs(num_convs,
in_channels,
out_channels,
act_cfg=dict(type='ReLU', inplace=True)):
convs = []
for _ in range(num_convs):
convs.append(nn.Conv2d(in_channels, out_channels, 3, padding=1))
convs.append(MODELS.build(act_cfg))
in_channels = out_channels
return nn.Sequential(*convs)
class InstanceBranch(nn.Module):
def __init__(self,
in_channels,
dim=256,
num_convs=4,
num_masks=100,
num_classes=80,
kernel_dim=128,
act_cfg=dict(type='ReLU', inplace=True)):
super().__init__()
num_masks = num_masks
self.num_classes = num_classes
self.inst_convs = _make_stack_3x3_convs(num_convs, in_channels, dim,
act_cfg)
# iam prediction, a simple conv
self.iam_conv = nn.Conv2d(dim, num_masks, 3, padding=1)
# outputs
self.cls_score = nn.Linear(dim, self.num_classes)
self.mask_kernel = nn.Linear(dim, kernel_dim)
self.objectness = nn.Linear(dim, 1)
self.prior_prob = 0.01
self._init_weights()
def _init_weights(self):
for m in self.inst_convs.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
bias_value = -math.log((1 - self.prior_prob) / self.prior_prob)
for module in [self.iam_conv, self.cls_score]:
init.constant_(module.bias, bias_value)
init.normal_(self.iam_conv.weight, std=0.01)
init.normal_(self.cls_score.weight, std=0.01)
init.normal_(self.mask_kernel.weight, std=0.01)
init.constant_(self.mask_kernel.bias, 0.0)
def forward(self, features):
# instance features (x4 convs)
features = self.inst_convs(features)
# predict instance activation maps
iam = self.iam_conv(features)
iam_prob = iam.sigmoid()
B, N = iam_prob.shape[:2]
C = features.size(1)
# BxNxHxW -> BxNx(HW)
iam_prob = iam_prob.view(B, N, -1)
normalizer = iam_prob.sum(-1).clamp(min=1e-6)
iam_prob = iam_prob / normalizer[:, :, None]
# aggregate features: BxCxHxW -> Bx(HW)xC
inst_features = torch.bmm(iam_prob,
features.view(B, C, -1).permute(0, 2, 1))
# predict classification & segmentation kernel & objectness
pred_logits = self.cls_score(inst_features)
pred_kernel = self.mask_kernel(inst_features)
pred_scores = self.objectness(inst_features)
return pred_logits, pred_kernel, pred_scores, iam
class MaskBranch(nn.Module):
def __init__(self,
in_channels,
dim=256,
num_convs=4,
kernel_dim=128,
act_cfg=dict(type='ReLU', inplace=True)):
super().__init__()
self.mask_convs = _make_stack_3x3_convs(num_convs, in_channels, dim,
act_cfg)
self.projection = nn.Conv2d(dim, kernel_dim, kernel_size=1)
self._init_weights()
def _init_weights(self):
for m in self.mask_convs.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
kaiming_init(self.projection)
def forward(self, features):
# mask features (x4 convs)
features = self.mask_convs(features)
return self.projection(features)
@MODELS.register_module()
class BaseIAMDecoder(nn.Module):
def __init__(self,
in_channels,
num_classes,
ins_dim=256,
ins_conv=4,
mask_dim=256,
mask_conv=4,
kernel_dim=128,
scale_factor=2.0,
output_iam=False,
num_masks=100,
act_cfg=dict(type='ReLU', inplace=True)):
super().__init__()
# add 2 for coordinates
in_channels = in_channels # ENCODER.NUM_CHANNELS + 2
self.scale_factor = scale_factor
self.output_iam = output_iam
self.inst_branch = InstanceBranch(
in_channels,
dim=ins_dim,
num_convs=ins_conv,
num_masks=num_masks,
num_classes=num_classes,
kernel_dim=kernel_dim,
act_cfg=act_cfg)
self.mask_branch = MaskBranch(
in_channels,
dim=mask_dim,
num_convs=mask_conv,
kernel_dim=kernel_dim,
act_cfg=act_cfg)
@torch.no_grad()
def compute_coordinates_linspace(self, x):
# linspace is not supported in ONNX
h, w = x.size(2), x.size(3)
y_loc = torch.linspace(-1, 1, h, device=x.device)
x_loc = torch.linspace(-1, 1, w, device=x.device)
y_loc, x_loc = torch.meshgrid(y_loc, x_loc)
y_loc = y_loc.expand([x.shape[0], 1, -1, -1])
x_loc = x_loc.expand([x.shape[0], 1, -1, -1])
locations = torch.cat([x_loc, y_loc], 1)
return locations.to(x)
@torch.no_grad()
def compute_coordinates(self, x):
h, w = x.size(2), x.size(3)
y_loc = -1.0 + 2.0 * torch.arange(h, device=x.device) / (h - 1)
x_loc = -1.0 + 2.0 * torch.arange(w, device=x.device) / (w - 1)
y_loc, x_loc = torch.meshgrid(y_loc, x_loc)
y_loc = y_loc.expand([x.shape[0], 1, -1, -1])
x_loc = x_loc.expand([x.shape[0], 1, -1, -1])
locations = torch.cat([x_loc, y_loc], 1)
return locations.to(x)
def forward(self, features):
coord_features = self.compute_coordinates(features)
features = torch.cat([coord_features, features], dim=1)
pred_logits, pred_kernel, pred_scores, iam = self.inst_branch(features)
mask_features = self.mask_branch(features)
N = pred_kernel.shape[1]
# mask_features: BxCxHxW
B, C, H, W = mask_features.shape
pred_masks = torch.bmm(pred_kernel,
mask_features.view(B, C,
H * W)).view(B, N, H, W)
pred_masks = F.interpolate(
pred_masks,
scale_factor=self.scale_factor,
mode='bilinear',
align_corners=False)
output = {
'pred_logits': pred_logits,
'pred_masks': pred_masks,
'pred_scores': pred_scores,
}
if self.output_iam:
iam = F.interpolate(
iam,
scale_factor=self.scale_factor,
mode='bilinear',
align_corners=False)
output['pred_iam'] = iam
return output
class GroupInstanceBranch(nn.Module):
def __init__(self,
in_channels,
num_groups=4,
dim=256,
num_convs=4,
num_masks=100,
num_classes=80,
kernel_dim=128,
act_cfg=dict(type='ReLU', inplace=True)):
super().__init__()
self.num_groups = num_groups
self.num_classes = num_classes
self.inst_convs = _make_stack_3x3_convs(
num_convs, in_channels, dim, act_cfg=act_cfg)
# iam prediction, a group conv
expand_dim = dim * self.num_groups
self.iam_conv = nn.Conv2d(
dim,
num_masks * self.num_groups,
3,
padding=1,
groups=self.num_groups)
# outputs
self.fc = nn.Linear(expand_dim, expand_dim)
self.cls_score = nn.Linear(expand_dim, self.num_classes)
self.mask_kernel = nn.Linear(expand_dim, kernel_dim)
self.objectness = nn.Linear(expand_dim, 1)
self.prior_prob = 0.01
self._init_weights()
def _init_weights(self):
for m in self.inst_convs.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
bias_value = -math.log((1 - self.prior_prob) / self.prior_prob)
for module in [self.iam_conv, self.cls_score]:
init.constant_(module.bias, bias_value)
init.normal_(self.iam_conv.weight, std=0.01)
init.normal_(self.cls_score.weight, std=0.01)
init.normal_(self.mask_kernel.weight, std=0.01)
init.constant_(self.mask_kernel.bias, 0.0)
caffe2_xavier_init(self.fc)
def forward(self, features):
# instance features (x4 convs)
features = self.inst_convs(features)
# predict instance activation maps
iam = self.iam_conv(features)
iam_prob = iam.sigmoid()
B, N = iam_prob.shape[:2]
C = features.size(1)
# BxNxHxW -> BxNx(HW)
iam_prob = iam_prob.view(B, N, -1)
normalizer = iam_prob.sum(-1).clamp(min=1e-6)
iam_prob = iam_prob / normalizer[:, :, None]
# aggregate features: BxCxHxW -> Bx(HW)xC
inst_features = torch.bmm(iam_prob,
features.view(B, C, -1).permute(0, 2, 1))
inst_features = inst_features.reshape(B, 4, N // self.num_groups,
-1).transpose(1, 2).reshape(
B, N // self.num_groups, -1)
inst_features = F.relu_(self.fc(inst_features))
# predict classification & segmentation kernel & objectness
pred_logits = self.cls_score(inst_features)
pred_kernel = self.mask_kernel(inst_features)
pred_scores = self.objectness(inst_features)
return pred_logits, pred_kernel, pred_scores, iam
@MODELS.register_module()
class GroupIAMDecoder(BaseIAMDecoder):
def __init__(self,
in_channels,
num_classes,
num_groups=4,
ins_dim=256,
ins_conv=4,
mask_dim=256,
mask_conv=4,
kernel_dim=128,
scale_factor=2.0,
output_iam=False,
num_masks=100,
act_cfg=dict(type='ReLU', inplace=True)):
super().__init__(
in_channels=in_channels,
num_classes=num_classes,
ins_dim=ins_dim,
ins_conv=ins_conv,
mask_dim=mask_dim,
mask_conv=mask_conv,
kernel_dim=kernel_dim,
scale_factor=scale_factor,
output_iam=output_iam,
num_masks=num_masks,
act_cfg=act_cfg)
self.inst_branch = GroupInstanceBranch(
in_channels,
num_groups=num_groups,
dim=ins_dim,
num_convs=ins_conv,
num_masks=num_masks,
num_classes=num_classes,
kernel_dim=kernel_dim,
act_cfg=act_cfg)
class GroupInstanceSoftBranch(GroupInstanceBranch):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.softmax_bias = nn.Parameter(torch.ones([
1,
]))
def forward(self, features):
# instance features (x4 convs)
features = self.inst_convs(features)
# predict instance activation maps
iam = self.iam_conv(features)
B, N = iam.shape[:2]
C = features.size(1)
# BxNxHxW -> BxNx(HW)
iam_prob = F.softmax(iam.view(B, N, -1) + self.softmax_bias, dim=-1)
# aggregate features: BxCxHxW -> Bx(HW)xC
inst_features = torch.bmm(iam_prob,
features.view(B, C, -1).permute(0, 2, 1))
inst_features = inst_features.reshape(B, self.num_groups,
N // self.num_groups,
-1).transpose(1, 2).reshape(
B, N // self.num_groups, -1)
inst_features = F.relu_(self.fc(inst_features))
# predict classification & segmentation kernel & objectness
pred_logits = self.cls_score(inst_features)
pred_kernel = self.mask_kernel(inst_features)
pred_scores = self.objectness(inst_features)
return pred_logits, pred_kernel, pred_scores, iam
@MODELS.register_module()
class GroupIAMSoftDecoder(BaseIAMDecoder):
def __init__(self,
in_channels,
num_classes,
num_groups=4,
ins_dim=256,
ins_conv=4,
mask_dim=256,
mask_conv=4,
kernel_dim=128,
scale_factor=2.0,
output_iam=False,
num_masks=100,
act_cfg=dict(type='ReLU', inplace=True)):
super().__init__(
in_channels=in_channels,
num_classes=num_classes,
ins_dim=ins_dim,
ins_conv=ins_conv,
mask_dim=mask_dim,
mask_conv=mask_conv,
kernel_dim=kernel_dim,
scale_factor=scale_factor,
output_iam=output_iam,
num_masks=num_masks,
act_cfg=act_cfg)
self.inst_branch = GroupInstanceSoftBranch(
in_channels,
num_groups=num_groups,
dim=ins_dim,
num_convs=ins_conv,
num_masks=num_masks,
num_classes=num_classes,
kernel_dim=kernel_dim,
act_cfg=act_cfg)