MMDet / mmdetection /tests /test_apis /test_det_inferencer.py
Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
from unittest import TestCase, mock
from unittest.mock import Mock, patch
import mmcv
import mmengine
import numpy as np
import torch
from mmengine.structures import InstanceData
from mmengine.utils import is_list_of
from parameterized import parameterized
from mmdet.apis import DetInferencer
from mmdet.evaluation.functional import get_classes
from mmdet.structures import DetDataSample
class TestDetInferencer(TestCase):
@mock.patch('mmengine.infer.infer._load_checkpoint', return_value=None)
def test_init(self, mock):
# init from metafile
DetInferencer('rtmdet-t')
# init from cfg
DetInferencer('configs/yolox/yolox_tiny_8xb8-300e_coco.py')
def assert_predictions_equal(self, preds1, preds2):
for pred1, pred2 in zip(preds1, preds2):
if 'bboxes' in pred1:
self.assertTrue(
np.allclose(pred1['bboxes'], pred2['bboxes'], 0.1))
if 'scores' in pred1:
self.assertTrue(
np.allclose(pred1['scores'], pred2['scores'], 0.1))
if 'labels' in pred1:
self.assertTrue(np.allclose(pred1['labels'], pred2['labels']))
if 'panoptic_seg_path' in pred1:
self.assertTrue(
pred1['panoptic_seg_path'] == pred2['panoptic_seg_path'])
@parameterized.expand([
'rtmdet-t', 'mask-rcnn_r50_fpn_1x_coco', 'panoptic_fpn_r50_fpn_1x_coco'
])
def test_call(self, model):
# single img
img_path = 'tests/data/color.jpg'
mock_load = Mock(return_value=None)
with patch('mmengine.infer.infer._load_checkpoint', mock_load):
inferencer = DetInferencer(model)
# In the case of not loading the pretrained weight, the category
# defaults to COCO 80, so it needs to be replaced.
if model == 'panoptic_fpn_r50_fpn_1x_coco':
inferencer.visualizer.dataset_meta = {
'classes': get_classes('coco_panoptic'),
'palette': 'random'
}
res_path = inferencer(img_path, return_vis=True)
# ndarray
img = mmcv.imread(img_path)
res_ndarray = inferencer(img, return_vis=True)
self.assert_predictions_equal(res_path['predictions'],
res_ndarray['predictions'])
self.assertIn('visualization', res_path)
self.assertIn('visualization', res_ndarray)
# multiple images
img_paths = ['tests/data/color.jpg', 'tests/data/gray.jpg']
res_path = inferencer(img_paths, return_vis=True)
# list of ndarray
imgs = [mmcv.imread(p) for p in img_paths]
res_ndarray = inferencer(imgs, return_vis=True)
self.assert_predictions_equal(res_path['predictions'],
res_ndarray['predictions'])
self.assertIn('visualization', res_path)
self.assertIn('visualization', res_ndarray)
# img dir, test different batch sizes
img_dir = 'tests/data/VOCdevkit/VOC2007/JPEGImages/'
res_bs1 = inferencer(img_dir, batch_size=1, return_vis=True)
res_bs3 = inferencer(img_dir, batch_size=3, return_vis=True)
self.assert_predictions_equal(res_bs1['predictions'],
res_bs3['predictions'])
# There is a jitter operation when the mask is drawn,
# so it cannot be asserted.
if model == 'rtmdet-t':
for res_bs1_vis, res_bs3_vis in zip(res_bs1['visualization'],
res_bs3['visualization']):
self.assertTrue(np.allclose(res_bs1_vis, res_bs3_vis))
@parameterized.expand([
'rtmdet-t', 'mask-rcnn_r50_fpn_1x_coco', 'panoptic_fpn_r50_fpn_1x_coco'
])
def test_visualize(self, model):
img_paths = ['tests/data/color.jpg', 'tests/data/gray.jpg']
mock_load = Mock(return_value=None)
with patch('mmengine.infer.infer._load_checkpoint', mock_load):
inferencer = DetInferencer(model)
# In the case of not loading the pretrained weight, the category
# defaults to COCO 80, so it needs to be replaced.
if model == 'panoptic_fpn_r50_fpn_1x_coco':
inferencer.visualizer.dataset_meta = {
'classes': get_classes('coco_panoptic'),
'palette': 'random'
}
with tempfile.TemporaryDirectory() as tmp_dir:
inferencer(img_paths, out_dir=tmp_dir)
for img_dir in ['color.jpg', 'gray.jpg']:
self.assertTrue(osp.exists(osp.join(tmp_dir, 'vis', img_dir)))
@parameterized.expand([
'rtmdet-t', 'mask-rcnn_r50_fpn_1x_coco', 'panoptic_fpn_r50_fpn_1x_coco'
])
def test_postprocess(self, model):
# return_datasample
img_path = 'tests/data/color.jpg'
mock_load = Mock(return_value=None)
with patch('mmengine.infer.infer._load_checkpoint', mock_load):
inferencer = DetInferencer(model)
# In the case of not loading the pretrained weight, the category
# defaults to COCO 80, so it needs to be replaced.
if model == 'panoptic_fpn_r50_fpn_1x_coco':
inferencer.visualizer.dataset_meta = {
'classes': get_classes('coco_panoptic'),
'palette': 'random'
}
res = inferencer(img_path, return_datasample=True)
self.assertTrue(is_list_of(res['predictions'], DetDataSample))
with tempfile.TemporaryDirectory() as tmp_dir:
res = inferencer(img_path, out_dir=tmp_dir, no_save_pred=False)
dumped_res = mmengine.load(
osp.join(tmp_dir, 'preds', 'color.json'))
self.assertEqual(res['predictions'][0], dumped_res)
@mock.patch('mmengine.infer.infer._load_checkpoint', return_value=None)
def test_pred2dict(self, mock):
data_sample = DetDataSample()
data_sample.pred_instances = InstanceData()
data_sample.pred_instances.bboxes = np.array([[0, 0, 1, 1]])
data_sample.pred_instances.labels = np.array([0])
data_sample.pred_instances.scores = torch.FloatTensor([0.9])
res = DetInferencer('rtmdet-t').pred2dict(data_sample)
self.assertListAlmostEqual(res['bboxes'], [[0, 0, 1, 1]])
self.assertListAlmostEqual(res['labels'], [0])
self.assertListAlmostEqual(res['scores'], [0.9])
def assertListAlmostEqual(self, list1, list2, places=7):
for i in range(len(list1)):
if isinstance(list1[i], list):
self.assertListAlmostEqual(list1[i], list2[i], places=places)
else:
self.assertAlmostEqual(list1[i], list2[i], places=places)