Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
import os.path as osp
import tempfile
from unittest import TestCase
import numpy as np
import pycocotools.mask as mask_util
import torch
from mmengine.fileio import dump
from mmdet.evaluation import CocoMetric
class TestCocoMetric(TestCase):
def _create_dummy_coco_json(self, json_name):
dummy_mask = np.zeros((10, 10), order='F', dtype=np.uint8)
dummy_mask[:5, :5] = 1
rle_mask = mask_util.encode(dummy_mask)
rle_mask['counts'] = rle_mask['counts'].decode('utf-8')
image = {
'id': 0,
'width': 640,
'height': 640,
'file_name': 'fake_name.jpg',
}
annotation_1 = {
'id': 1,
'image_id': 0,
'category_id': 0,
'area': 400,
'bbox': [50, 60, 20, 20],
'iscrowd': 0,
'segmentation': rle_mask,
}
annotation_2 = {
'id': 2,
'image_id': 0,
'category_id': 0,
'area': 900,
'bbox': [100, 120, 30, 30],
'iscrowd': 0,
'segmentation': rle_mask,
}
annotation_3 = {
'id': 3,
'image_id': 0,
'category_id': 1,
'area': 1600,
'bbox': [150, 160, 40, 40],
'iscrowd': 0,
'segmentation': rle_mask,
}
annotation_4 = {
'id': 4,
'image_id': 0,
'category_id': 0,
'area': 10000,
'bbox': [250, 260, 100, 100],
'iscrowd': 0,
'segmentation': rle_mask,
}
categories = [
{
'id': 0,
'name': 'car',
'supercategory': 'car',
},
{
'id': 1,
'name': 'bicycle',
'supercategory': 'bicycle',
},
]
fake_json = {
'images': [image],
'annotations':
[annotation_1, annotation_2, annotation_3, annotation_4],
'categories': categories
}
dump(fake_json, json_name)
def _create_dummy_results(self):
bboxes = np.array([[50, 60, 70, 80], [100, 120, 130, 150],
[150, 160, 190, 200], [250, 260, 350, 360]])
scores = np.array([1.0, 0.98, 0.96, 0.95])
labels = np.array([0, 0, 1, 0])
dummy_mask = np.zeros((4, 10, 10), dtype=np.uint8)
dummy_mask[:, :5, :5] = 1
return dict(
bboxes=torch.from_numpy(bboxes),
scores=torch.from_numpy(scores),
labels=torch.from_numpy(labels),
masks=torch.from_numpy(dummy_mask))
def setUp(self):
self.tmp_dir = tempfile.TemporaryDirectory()
def tearDown(self):
self.tmp_dir.cleanup()
def test_init(self):
fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
self._create_dummy_coco_json(fake_json_file)
with self.assertRaisesRegex(KeyError, 'metric should be one of'):
CocoMetric(ann_file=fake_json_file, metric='unknown')
def test_evaluate(self):
# create dummy data
fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
self._create_dummy_coco_json(fake_json_file)
dummy_pred = self._create_dummy_results()
# test single coco dataset evaluation
coco_metric = CocoMetric(
ann_file=fake_json_file,
classwise=False,
outfile_prefix=f'{self.tmp_dir.name}/test')
coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
coco_metric.process(
{},
[dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
eval_results = coco_metric.evaluate(size=1)
target = {
'coco/bbox_mAP': 1.0,
'coco/bbox_mAP_50': 1.0,
'coco/bbox_mAP_75': 1.0,
'coco/bbox_mAP_s': 1.0,
'coco/bbox_mAP_m': 1.0,
'coco/bbox_mAP_l': 1.0,
}
self.assertDictEqual(eval_results, target)
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, 'test.bbox.json')))
# test box and segm coco dataset evaluation
coco_metric = CocoMetric(
ann_file=fake_json_file,
metric=['bbox', 'segm'],
classwise=False,
outfile_prefix=f'{self.tmp_dir.name}/test')
coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
coco_metric.process(
{},
[dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
eval_results = coco_metric.evaluate(size=1)
target = {
'coco/bbox_mAP': 1.0,
'coco/bbox_mAP_50': 1.0,
'coco/bbox_mAP_75': 1.0,
'coco/bbox_mAP_s': 1.0,
'coco/bbox_mAP_m': 1.0,
'coco/bbox_mAP_l': 1.0,
'coco/segm_mAP': 1.0,
'coco/segm_mAP_50': 1.0,
'coco/segm_mAP_75': 1.0,
'coco/segm_mAP_s': 1.0,
'coco/segm_mAP_m': 1.0,
'coco/segm_mAP_l': 1.0,
}
self.assertDictEqual(eval_results, target)
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, 'test.bbox.json')))
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, 'test.segm.json')))
# test invalid custom metric_items
with self.assertRaisesRegex(KeyError,
'metric item "invalid" is not supported'):
coco_metric = CocoMetric(
ann_file=fake_json_file, metric_items=['invalid'])
coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
coco_metric.process({}, [
dict(
pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))
])
coco_metric.evaluate(size=1)
# test custom metric_items
coco_metric = CocoMetric(
ann_file=fake_json_file, metric_items=['mAP_m'])
coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
coco_metric.process(
{},
[dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
eval_results = coco_metric.evaluate(size=1)
target = {
'coco/bbox_mAP_m': 1.0,
}
self.assertDictEqual(eval_results, target)
def test_classwise_evaluate(self):
# create dummy data
fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
self._create_dummy_coco_json(fake_json_file)
dummy_pred = self._create_dummy_results()
# test single coco dataset evaluation
coco_metric = CocoMetric(
ann_file=fake_json_file, metric='bbox', classwise=True)
# coco_metric1 = CocoMetric(
# ann_file=fake_json_file, metric='bbox', classwise=True)
coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
coco_metric.process(
{},
[dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
eval_results = coco_metric.evaluate(size=1)
target = {
'coco/bbox_mAP': 1.0,
'coco/bbox_mAP_50': 1.0,
'coco/bbox_mAP_75': 1.0,
'coco/bbox_mAP_s': 1.0,
'coco/bbox_mAP_m': 1.0,
'coco/bbox_mAP_l': 1.0,
'coco/car_precision': 1.0,
'coco/bicycle_precision': 1.0,
}
self.assertDictEqual(eval_results, target)
def test_manually_set_iou_thrs(self):
# create dummy data
fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
self._create_dummy_coco_json(fake_json_file)
# test single coco dataset evaluation
coco_metric = CocoMetric(
ann_file=fake_json_file, metric='bbox', iou_thrs=[0.3, 0.6])
coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
self.assertEqual(coco_metric.iou_thrs, [0.3, 0.6])
def test_fast_eval_recall(self):
# create dummy data
fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
self._create_dummy_coco_json(fake_json_file)
dummy_pred = self._create_dummy_results()
# test default proposal nums
coco_metric = CocoMetric(
ann_file=fake_json_file, metric='proposal_fast')
coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
coco_metric.process(
{},
[dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
eval_results = coco_metric.evaluate(size=1)
target = {'coco/AR@100': 1.0, 'coco/AR@300': 1.0, 'coco/AR@1000': 1.0}
self.assertDictEqual(eval_results, target)
# test manually set proposal nums
coco_metric = CocoMetric(
ann_file=fake_json_file,
metric='proposal_fast',
proposal_nums=(2, 4))
coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
coco_metric.process(
{},
[dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
eval_results = coco_metric.evaluate(size=1)
target = {'coco/AR@2': 0.5, 'coco/AR@4': 1.0}
self.assertDictEqual(eval_results, target)
def test_evaluate_proposal(self):
# create dummy data
fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
self._create_dummy_coco_json(fake_json_file)
dummy_pred = self._create_dummy_results()
coco_metric = CocoMetric(ann_file=fake_json_file, metric='proposal')
coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
coco_metric.process(
{},
[dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
eval_results = coco_metric.evaluate(size=1)
print(eval_results)
target = {
'coco/AR@100': 1,
'coco/AR@300': 1.0,
'coco/AR@1000': 1.0,
'coco/AR_s@1000': 1.0,
'coco/AR_m@1000': 1.0,
'coco/AR_l@1000': 1.0
}
self.assertDictEqual(eval_results, target)
def test_empty_results(self):
# create dummy data
fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
self._create_dummy_coco_json(fake_json_file)
coco_metric = CocoMetric(ann_file=fake_json_file, metric='bbox')
coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
bboxes = np.zeros((0, 4))
labels = np.array([])
scores = np.array([])
dummy_mask = np.zeros((0, 10, 10), dtype=np.uint8)
empty_pred = dict(
bboxes=torch.from_numpy(bboxes),
scores=torch.from_numpy(scores),
labels=torch.from_numpy(labels),
masks=torch.from_numpy(dummy_mask))
coco_metric.process(
{},
[dict(pred_instances=empty_pred, img_id=0, ori_shape=(640, 640))])
# coco api Index error will be caught
coco_metric.evaluate(size=1)
def test_evaluate_without_json(self):
dummy_pred = self._create_dummy_results()
dummy_mask = np.zeros((10, 10), order='F', dtype=np.uint8)
dummy_mask[:5, :5] = 1
rle_mask = mask_util.encode(dummy_mask)
rle_mask['counts'] = rle_mask['counts'].decode('utf-8')
instances = [{
'bbox_label': 0,
'bbox': [50, 60, 70, 80],
'ignore_flag': 0,
'mask': rle_mask,
}, {
'bbox_label': 0,
'bbox': [100, 120, 130, 150],
'ignore_flag': 0,
'mask': rle_mask,
}, {
'bbox_label': 1,
'bbox': [150, 160, 190, 200],
'ignore_flag': 0,
'mask': rle_mask,
}, {
'bbox_label': 0,
'bbox': [250, 260, 350, 360],
'ignore_flag': 0,
'mask': rle_mask,
}]
coco_metric = CocoMetric(
ann_file=None,
metric=['bbox', 'segm'],
classwise=False,
outfile_prefix=f'{self.tmp_dir.name}/test')
coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
coco_metric.process({}, [
dict(
pred_instances=dummy_pred,
img_id=0,
ori_shape=(640, 640),
instances=instances)
])
eval_results = coco_metric.evaluate(size=1)
print(eval_results)
target = {
'coco/bbox_mAP': 1.0,
'coco/bbox_mAP_50': 1.0,
'coco/bbox_mAP_75': 1.0,
'coco/bbox_mAP_s': 1.0,
'coco/bbox_mAP_m': 1.0,
'coco/bbox_mAP_l': 1.0,
'coco/segm_mAP': 1.0,
'coco/segm_mAP_50': 1.0,
'coco/segm_mAP_75': 1.0,
'coco/segm_mAP_s': 1.0,
'coco/segm_mAP_m': 1.0,
'coco/segm_mAP_l': 1.0,
}
self.assertDictEqual(eval_results, target)
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, 'test.bbox.json')))
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, 'test.segm.json')))
self.assertTrue(
osp.isfile(osp.join(self.tmp_dir.name, 'test.gt.json')))
def test_format_only(self):
# create dummy data
fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
self._create_dummy_coco_json(fake_json_file)
dummy_pred = self._create_dummy_results()
with self.assertRaises(AssertionError):
CocoMetric(
ann_file=fake_json_file,
classwise=False,
format_only=True,
outfile_prefix=None)
coco_metric = CocoMetric(
ann_file=fake_json_file,
metric='bbox',
classwise=False,
format_only=True,
outfile_prefix=f'{self.tmp_dir.name}/test')
coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
coco_metric.process(
{},
[dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
eval_results = coco_metric.evaluate(size=1)
self.assertDictEqual(eval_results, dict())
self.assertTrue(osp.exists(f'{self.tmp_dir.name}/test.bbox.json'))