Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import numpy as np
import torch
from mmengine import MessageHub
from mmengine.config import ConfigDict
from mmengine.structures import InstanceData
from mmdet.models.dense_heads import BoxInstBboxHead, BoxInstMaskHead
from mmdet.structures.mask import BitmapMasks
def _rand_masks(num_items, bboxes, img_w, img_h):
rng = np.random.RandomState(0)
masks = np.zeros((num_items, img_h, img_w), dtype=np.float32)
for i, bbox in enumerate(bboxes):
bbox = bbox.astype(np.int32)
mask = (rng.rand(1, bbox[3] - bbox[1], bbox[2] - bbox[0]) >
0.3).astype(np.int64)
masks[i:i + 1, bbox[1]:bbox[3], bbox[0]:bbox[2]] = mask
return BitmapMasks(masks, height=img_h, width=img_w)
def _fake_mask_feature_head():
mask_feature_head = ConfigDict(
in_channels=1,
feat_channels=1,
start_level=0,
end_level=2,
out_channels=8,
mask_stride=8,
num_stacked_convs=4,
norm_cfg=dict(type='BN', requires_grad=True))
return mask_feature_head
class TestBoxInstHead(TestCase):
def test_boxinst_maskhead_loss(self):
"""Tests boxinst maskhead loss when truth is empty and non-empty."""
s = 256
img_metas = [{
'img_shape': (s, s, 3),
'pad_shape': (s, s, 3),
'scale_factor': 1,
}]
boxinst_bboxhead = BoxInstBboxHead(
num_classes=4,
in_channels=1,
feat_channels=1,
stacked_convs=1,
norm_cfg=None)
mask_feature_head = _fake_mask_feature_head()
boxinst_maskhead = BoxInstMaskHead(
mask_feature_head=mask_feature_head,
loss_mask=dict(
type='DiceLoss',
use_sigmoid=True,
activate=True,
eps=5e-6,
loss_weight=1.0))
# Fcos head expects a multiple levels of features per image
feats = []
for i in range(len(boxinst_bboxhead.strides)):
feats.append(
torch.rand(1, 1, s // (2**(i + 3)), s // (2**(i + 3))))
feats = tuple(feats)
cls_scores, bbox_preds, centernesses, param_preds =\
boxinst_bboxhead.forward(feats)
# Test that empty ground truth encourages the network to
# predict background
gt_instances = InstanceData()
gt_instances.bboxes = torch.empty((0, 4))
gt_instances.labels = torch.LongTensor([])
gt_instances.masks = _rand_masks(0, gt_instances.bboxes.numpy(), s, s)
gt_instances.pairwise_masks = _rand_masks(
0, gt_instances.bboxes.numpy(), s // 4, s // 4).to_tensor(
dtype=torch.float32,
device='cpu').unsqueeze(1).repeat(1, 8, 1, 1)
message_hub = MessageHub.get_instance('runtime_info')
message_hub.update_info('iter', 1)
_ = boxinst_bboxhead.loss_by_feat(cls_scores, bbox_preds, centernesses,
param_preds, [gt_instances],
img_metas)
# When truth is empty then all mask loss
# should be zero for random inputs
positive_infos = boxinst_bboxhead.get_positive_infos()
mask_outs = boxinst_maskhead.forward(feats, positive_infos)
empty_gt_mask_losses = boxinst_maskhead.loss_by_feat(
*mask_outs, [gt_instances], img_metas, positive_infos)
loss_mask_project = empty_gt_mask_losses['loss_mask_project']
loss_mask_pairwise = empty_gt_mask_losses['loss_mask_pairwise']
self.assertEqual(loss_mask_project, 0,
'mask project loss should be zero')
self.assertEqual(loss_mask_pairwise, 0,
'mask pairwise loss should be zero')
# When truth is non-empty then all cls, box loss and centerness loss
# should be nonzero for random inputs
gt_instances = InstanceData()
gt_instances.bboxes = torch.Tensor([[0.111, 0.222, 25.6667, 29.8757]])
gt_instances.labels = torch.LongTensor([2])
gt_instances.masks = _rand_masks(1, gt_instances.bboxes.numpy(), s, s)
gt_instances.pairwise_masks = _rand_masks(
1, gt_instances.bboxes.numpy(), s // 4, s // 4).to_tensor(
dtype=torch.float32,
device='cpu').unsqueeze(1).repeat(1, 8, 1, 1)
_ = boxinst_bboxhead.loss_by_feat(cls_scores, bbox_preds, centernesses,
param_preds, [gt_instances],
img_metas)
positive_infos = boxinst_bboxhead.get_positive_infos()
mask_outs = boxinst_maskhead.forward(feats, positive_infos)
one_gt_mask_losses = boxinst_maskhead.loss_by_feat(
*mask_outs, [gt_instances], img_metas, positive_infos)
loss_mask_project = one_gt_mask_losses['loss_mask_project']
loss_mask_pairwise = one_gt_mask_losses['loss_mask_pairwise']
self.assertGreater(loss_mask_project, 0,
'mask project loss should be nonzero')
self.assertGreater(loss_mask_pairwise, 0,
'mask pairwise loss should be nonzero')