|
|
|
|
|
from unittest import TestCase |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
from mmengine import MessageHub |
|
|
from mmengine.config import ConfigDict |
|
|
from mmengine.structures import InstanceData |
|
|
|
|
|
from mmdet.models.dense_heads import BoxInstBboxHead, BoxInstMaskHead |
|
|
from mmdet.structures.mask import BitmapMasks |
|
|
|
|
|
|
|
|
def _rand_masks(num_items, bboxes, img_w, img_h): |
|
|
rng = np.random.RandomState(0) |
|
|
masks = np.zeros((num_items, img_h, img_w), dtype=np.float32) |
|
|
for i, bbox in enumerate(bboxes): |
|
|
bbox = bbox.astype(np.int32) |
|
|
mask = (rng.rand(1, bbox[3] - bbox[1], bbox[2] - bbox[0]) > |
|
|
0.3).astype(np.int64) |
|
|
masks[i:i + 1, bbox[1]:bbox[3], bbox[0]:bbox[2]] = mask |
|
|
return BitmapMasks(masks, height=img_h, width=img_w) |
|
|
|
|
|
|
|
|
def _fake_mask_feature_head(): |
|
|
mask_feature_head = ConfigDict( |
|
|
in_channels=1, |
|
|
feat_channels=1, |
|
|
start_level=0, |
|
|
end_level=2, |
|
|
out_channels=8, |
|
|
mask_stride=8, |
|
|
num_stacked_convs=4, |
|
|
norm_cfg=dict(type='BN', requires_grad=True)) |
|
|
return mask_feature_head |
|
|
|
|
|
|
|
|
class TestBoxInstHead(TestCase): |
|
|
|
|
|
def test_boxinst_maskhead_loss(self): |
|
|
"""Tests boxinst maskhead loss when truth is empty and non-empty.""" |
|
|
s = 256 |
|
|
img_metas = [{ |
|
|
'img_shape': (s, s, 3), |
|
|
'pad_shape': (s, s, 3), |
|
|
'scale_factor': 1, |
|
|
}] |
|
|
boxinst_bboxhead = BoxInstBboxHead( |
|
|
num_classes=4, |
|
|
in_channels=1, |
|
|
feat_channels=1, |
|
|
stacked_convs=1, |
|
|
norm_cfg=None) |
|
|
|
|
|
mask_feature_head = _fake_mask_feature_head() |
|
|
boxinst_maskhead = BoxInstMaskHead( |
|
|
mask_feature_head=mask_feature_head, |
|
|
loss_mask=dict( |
|
|
type='DiceLoss', |
|
|
use_sigmoid=True, |
|
|
activate=True, |
|
|
eps=5e-6, |
|
|
loss_weight=1.0)) |
|
|
|
|
|
|
|
|
feats = [] |
|
|
for i in range(len(boxinst_bboxhead.strides)): |
|
|
feats.append( |
|
|
torch.rand(1, 1, s // (2**(i + 3)), s // (2**(i + 3)))) |
|
|
feats = tuple(feats) |
|
|
cls_scores, bbox_preds, centernesses, param_preds =\ |
|
|
boxinst_bboxhead.forward(feats) |
|
|
|
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.empty((0, 4)) |
|
|
gt_instances.labels = torch.LongTensor([]) |
|
|
gt_instances.masks = _rand_masks(0, gt_instances.bboxes.numpy(), s, s) |
|
|
gt_instances.pairwise_masks = _rand_masks( |
|
|
0, gt_instances.bboxes.numpy(), s // 4, s // 4).to_tensor( |
|
|
dtype=torch.float32, |
|
|
device='cpu').unsqueeze(1).repeat(1, 8, 1, 1) |
|
|
message_hub = MessageHub.get_instance('runtime_info') |
|
|
message_hub.update_info('iter', 1) |
|
|
_ = boxinst_bboxhead.loss_by_feat(cls_scores, bbox_preds, centernesses, |
|
|
param_preds, [gt_instances], |
|
|
img_metas) |
|
|
|
|
|
|
|
|
positive_infos = boxinst_bboxhead.get_positive_infos() |
|
|
mask_outs = boxinst_maskhead.forward(feats, positive_infos) |
|
|
empty_gt_mask_losses = boxinst_maskhead.loss_by_feat( |
|
|
*mask_outs, [gt_instances], img_metas, positive_infos) |
|
|
loss_mask_project = empty_gt_mask_losses['loss_mask_project'] |
|
|
loss_mask_pairwise = empty_gt_mask_losses['loss_mask_pairwise'] |
|
|
self.assertEqual(loss_mask_project, 0, |
|
|
'mask project loss should be zero') |
|
|
self.assertEqual(loss_mask_pairwise, 0, |
|
|
'mask pairwise loss should be zero') |
|
|
|
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.Tensor([[0.111, 0.222, 25.6667, 29.8757]]) |
|
|
gt_instances.labels = torch.LongTensor([2]) |
|
|
gt_instances.masks = _rand_masks(1, gt_instances.bboxes.numpy(), s, s) |
|
|
gt_instances.pairwise_masks = _rand_masks( |
|
|
1, gt_instances.bboxes.numpy(), s // 4, s // 4).to_tensor( |
|
|
dtype=torch.float32, |
|
|
device='cpu').unsqueeze(1).repeat(1, 8, 1, 1) |
|
|
|
|
|
_ = boxinst_bboxhead.loss_by_feat(cls_scores, bbox_preds, centernesses, |
|
|
param_preds, [gt_instances], |
|
|
img_metas) |
|
|
positive_infos = boxinst_bboxhead.get_positive_infos() |
|
|
mask_outs = boxinst_maskhead.forward(feats, positive_infos) |
|
|
one_gt_mask_losses = boxinst_maskhead.loss_by_feat( |
|
|
*mask_outs, [gt_instances], img_metas, positive_infos) |
|
|
loss_mask_project = one_gt_mask_losses['loss_mask_project'] |
|
|
loss_mask_pairwise = one_gt_mask_losses['loss_mask_pairwise'] |
|
|
self.assertGreater(loss_mask_project, 0, |
|
|
'mask project loss should be nonzero') |
|
|
self.assertGreater(loss_mask_pairwise, 0, |
|
|
'mask pairwise loss should be nonzero') |
|
|
|