|
|
|
|
|
from unittest import TestCase |
|
|
|
|
|
import torch |
|
|
from mmengine.structures import InstanceData |
|
|
|
|
|
from mmdet.models.dense_heads import FCOSHead |
|
|
|
|
|
|
|
|
class TestFCOSHead(TestCase): |
|
|
|
|
|
def test_fcos_head_loss(self): |
|
|
"""Tests fcos head loss when truth is empty and non-empty.""" |
|
|
s = 256 |
|
|
img_metas = [{ |
|
|
'img_shape': (s, s, 3), |
|
|
'pad_shape': (s, s, 3), |
|
|
'scale_factor': 1, |
|
|
}] |
|
|
fcos_head = FCOSHead( |
|
|
num_classes=4, |
|
|
in_channels=1, |
|
|
feat_channels=1, |
|
|
stacked_convs=1, |
|
|
norm_cfg=None) |
|
|
|
|
|
|
|
|
feats = ( |
|
|
torch.rand(1, 1, s // stride[1], s // stride[0]) |
|
|
for stride in fcos_head.prior_generator.strides) |
|
|
cls_scores, bbox_preds, centernesses = fcos_head.forward(feats) |
|
|
|
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.empty((0, 4)) |
|
|
gt_instances.labels = torch.LongTensor([]) |
|
|
|
|
|
empty_gt_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
centernesses, [gt_instances], |
|
|
img_metas) |
|
|
|
|
|
|
|
|
empty_cls_loss = empty_gt_losses['loss_cls'].item() |
|
|
empty_box_loss = empty_gt_losses['loss_bbox'].item() |
|
|
empty_ctr_loss = empty_gt_losses['loss_centerness'].item() |
|
|
self.assertGreater(empty_cls_loss, 0, 'cls loss should be non-zero') |
|
|
self.assertEqual( |
|
|
empty_box_loss, 0, |
|
|
'there should be no box loss when there are no true boxes') |
|
|
self.assertEqual( |
|
|
empty_ctr_loss, 0, |
|
|
'there should be no centerness loss when there are no true boxes') |
|
|
|
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.Tensor( |
|
|
[[23.6667, 23.8757, 238.6326, 151.8874]]) |
|
|
gt_instances.labels = torch.LongTensor([2]) |
|
|
|
|
|
one_gt_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
centernesses, [gt_instances], |
|
|
img_metas) |
|
|
onegt_cls_loss = one_gt_losses['loss_cls'].item() |
|
|
onegt_box_loss = one_gt_losses['loss_bbox'].item() |
|
|
onegt_ctr_loss = one_gt_losses['loss_centerness'].item() |
|
|
self.assertGreater(onegt_cls_loss, 0, 'cls loss should be non-zero') |
|
|
self.assertGreater(onegt_box_loss, 0, 'box loss should be non-zero') |
|
|
self.assertGreater(onegt_ctr_loss, 0, |
|
|
'centerness loss should be non-zero') |
|
|
|
|
|
|
|
|
fcos_head.center_sampling = True |
|
|
ctrsamp_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
centernesses, [gt_instances], |
|
|
img_metas) |
|
|
ctrsamp_cls_loss = ctrsamp_losses['loss_cls'].item() |
|
|
ctrsamp_box_loss = ctrsamp_losses['loss_bbox'].item() |
|
|
ctrsamp_ctr_loss = ctrsamp_losses['loss_centerness'].item() |
|
|
self.assertGreater(ctrsamp_cls_loss, 0, 'cls loss should be non-zero') |
|
|
self.assertGreater(ctrsamp_box_loss, 0, 'box loss should be non-zero') |
|
|
self.assertGreater(ctrsamp_ctr_loss, 0, |
|
|
'centerness loss should be non-zero') |
|
|
|
|
|
|
|
|
fcos_head.norm_on_bbox = True |
|
|
normbox_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
centernesses, [gt_instances], |
|
|
img_metas) |
|
|
normbox_cls_loss = normbox_losses['loss_cls'].item() |
|
|
normbox_box_loss = normbox_losses['loss_bbox'].item() |
|
|
normbox_ctr_loss = normbox_losses['loss_centerness'].item() |
|
|
self.assertGreater(normbox_cls_loss, 0, 'cls loss should be non-zero') |
|
|
self.assertGreater(normbox_box_loss, 0, 'box loss should be non-zero') |
|
|
self.assertGreater(normbox_ctr_loss, 0, |
|
|
'centerness loss should be non-zero') |
|
|
|