Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import torch
from mmengine.structures import InstanceData
from mmdet.models.dense_heads import FCOSHead
class TestFCOSHead(TestCase):
def test_fcos_head_loss(self):
"""Tests fcos head loss when truth is empty and non-empty."""
s = 256
img_metas = [{
'img_shape': (s, s, 3),
'pad_shape': (s, s, 3),
'scale_factor': 1,
}]
fcos_head = FCOSHead(
num_classes=4,
in_channels=1,
feat_channels=1,
stacked_convs=1,
norm_cfg=None)
# Fcos head expects a multiple levels of features per image
feats = (
torch.rand(1, 1, s // stride[1], s // stride[0])
for stride in fcos_head.prior_generator.strides)
cls_scores, bbox_preds, centernesses = fcos_head.forward(feats)
# Test that empty ground truth encourages the network to
# predict background
gt_instances = InstanceData()
gt_instances.bboxes = torch.empty((0, 4))
gt_instances.labels = torch.LongTensor([])
empty_gt_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds,
centernesses, [gt_instances],
img_metas)
# When there is no truth, the cls loss should be nonzero but
# box loss and centerness loss should be zero
empty_cls_loss = empty_gt_losses['loss_cls'].item()
empty_box_loss = empty_gt_losses['loss_bbox'].item()
empty_ctr_loss = empty_gt_losses['loss_centerness'].item()
self.assertGreater(empty_cls_loss, 0, 'cls loss should be non-zero')
self.assertEqual(
empty_box_loss, 0,
'there should be no box loss when there are no true boxes')
self.assertEqual(
empty_ctr_loss, 0,
'there should be no centerness loss when there are no true boxes')
# When truth is non-empty then all cls, box loss and centerness loss
# should be nonzero for random inputs
gt_instances = InstanceData()
gt_instances.bboxes = torch.Tensor(
[[23.6667, 23.8757, 238.6326, 151.8874]])
gt_instances.labels = torch.LongTensor([2])
one_gt_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds,
centernesses, [gt_instances],
img_metas)
onegt_cls_loss = one_gt_losses['loss_cls'].item()
onegt_box_loss = one_gt_losses['loss_bbox'].item()
onegt_ctr_loss = one_gt_losses['loss_centerness'].item()
self.assertGreater(onegt_cls_loss, 0, 'cls loss should be non-zero')
self.assertGreater(onegt_box_loss, 0, 'box loss should be non-zero')
self.assertGreater(onegt_ctr_loss, 0,
'centerness loss should be non-zero')
# Test the `center_sampling` works fine.
fcos_head.center_sampling = True
ctrsamp_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds,
centernesses, [gt_instances],
img_metas)
ctrsamp_cls_loss = ctrsamp_losses['loss_cls'].item()
ctrsamp_box_loss = ctrsamp_losses['loss_bbox'].item()
ctrsamp_ctr_loss = ctrsamp_losses['loss_centerness'].item()
self.assertGreater(ctrsamp_cls_loss, 0, 'cls loss should be non-zero')
self.assertGreater(ctrsamp_box_loss, 0, 'box loss should be non-zero')
self.assertGreater(ctrsamp_ctr_loss, 0,
'centerness loss should be non-zero')
# Test the `norm_on_bbox` works fine.
fcos_head.norm_on_bbox = True
normbox_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds,
centernesses, [gt_instances],
img_metas)
normbox_cls_loss = normbox_losses['loss_cls'].item()
normbox_box_loss = normbox_losses['loss_bbox'].item()
normbox_ctr_loss = normbox_losses['loss_centerness'].item()
self.assertGreater(normbox_cls_loss, 0, 'cls loss should be non-zero')
self.assertGreater(normbox_box_loss, 0, 'box loss should be non-zero')
self.assertGreater(normbox_ctr_loss, 0,
'centerness loss should be non-zero')