|
|
|
|
|
from unittest import TestCase |
|
|
|
|
|
import torch |
|
|
from mmengine.structures import InstanceData |
|
|
|
|
|
from mmdet.models.dense_heads import FoveaHead |
|
|
|
|
|
|
|
|
class TestFOVEAHead(TestCase): |
|
|
|
|
|
def test_fovea_head_loss(self): |
|
|
"""Tests anchor head loss when truth is empty and non-empty.""" |
|
|
s = 256 |
|
|
img_metas = [{ |
|
|
'img_shape': (s, s, 3), |
|
|
'pad_shape': (s, s, 3), |
|
|
'scale_factor': 1, |
|
|
}] |
|
|
|
|
|
fovea_head = FoveaHead(num_classes=4, in_channels=1) |
|
|
|
|
|
|
|
|
feats = ( |
|
|
torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))) |
|
|
for i in range(len(fovea_head.prior_generator.strides))) |
|
|
cls_scores, bbox_preds = fovea_head.forward(feats) |
|
|
|
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.empty((0, 4)) |
|
|
gt_instances.labels = torch.LongTensor([]) |
|
|
|
|
|
empty_gt_losses = fovea_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
[gt_instances], img_metas) |
|
|
|
|
|
|
|
|
empty_cls_loss = empty_gt_losses['loss_cls'] |
|
|
empty_box_loss = empty_gt_losses['loss_bbox'] |
|
|
self.assertGreater(empty_cls_loss.item(), 0, |
|
|
'cls loss should be non-zero') |
|
|
self.assertEqual( |
|
|
empty_box_loss.item(), 0, |
|
|
'there should be no box loss when there are no true boxes') |
|
|
|
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.Tensor( |
|
|
[[23.6667, 23.8757, 238.6326, 151.8874]]) |
|
|
gt_instances.labels = torch.LongTensor([2]) |
|
|
|
|
|
one_gt_losses = fovea_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
[gt_instances], img_metas) |
|
|
onegt_cls_loss = one_gt_losses['loss_cls'] |
|
|
onegt_box_loss = one_gt_losses['loss_bbox'] |
|
|
self.assertGreater(onegt_cls_loss.item(), 0, |
|
|
'cls loss should be non-zero') |
|
|
self.assertGreater(onegt_box_loss.item(), 0, |
|
|
'box loss should be non-zero') |
|
|
|