|
|
|
|
|
from unittest import TestCase |
|
|
|
|
|
import torch |
|
|
from mmengine import Config |
|
|
from mmengine.structures import InstanceData |
|
|
|
|
|
from mmdet import * |
|
|
from mmdet.models.dense_heads import GFLHead |
|
|
|
|
|
|
|
|
class TestGFLHead(TestCase): |
|
|
|
|
|
def test_gfl_head_loss(self): |
|
|
"""Tests gfl head loss when truth is empty and non-empty.""" |
|
|
s = 256 |
|
|
img_metas = [{ |
|
|
'img_shape': (s, s, 3), |
|
|
'pad_shape': (s, s, 3), |
|
|
'scale_factor': 1 |
|
|
}] |
|
|
train_cfg = Config( |
|
|
dict( |
|
|
assigner=dict(type='ATSSAssigner', topk=9), |
|
|
allowed_border=-1, |
|
|
pos_weight=-1, |
|
|
debug=False)) |
|
|
gfl_head = GFLHead( |
|
|
num_classes=4, |
|
|
in_channels=1, |
|
|
stacked_convs=1, |
|
|
train_cfg=train_cfg, |
|
|
anchor_generator=dict( |
|
|
type='AnchorGenerator', |
|
|
ratios=[1.0], |
|
|
octave_base_scale=8, |
|
|
scales_per_octave=1, |
|
|
strides=[8, 16, 32, 64, 128]), |
|
|
loss_cls=dict( |
|
|
type='QualityFocalLoss', |
|
|
use_sigmoid=True, |
|
|
beta=2.0, |
|
|
loss_weight=1.0), |
|
|
loss_bbox=dict(type='GIoULoss', loss_weight=2.0)) |
|
|
feat = [ |
|
|
torch.rand(1, 1, s // feat_size, s // feat_size) |
|
|
for feat_size in [4, 8, 16, 32, 64] |
|
|
] |
|
|
cls_scores, bbox_preds = gfl_head.forward(feat) |
|
|
|
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.empty((0, 4)) |
|
|
gt_instances.labels = torch.LongTensor([]) |
|
|
|
|
|
empty_gt_losses = gfl_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
[gt_instances], img_metas) |
|
|
|
|
|
|
|
|
empty_cls_loss = sum(empty_gt_losses['loss_cls']) |
|
|
empty_box_loss = sum(empty_gt_losses['loss_bbox']) |
|
|
empty_dfl_loss = sum(empty_gt_losses['loss_dfl']) |
|
|
self.assertGreater(empty_cls_loss.item(), 0, |
|
|
'cls loss should be non-zero') |
|
|
self.assertEqual( |
|
|
empty_box_loss.item(), 0, |
|
|
'there should be no box loss when there are no true boxes') |
|
|
self.assertEqual( |
|
|
empty_dfl_loss.item(), 0, |
|
|
'there should be no dfl loss when there are no true boxes') |
|
|
|
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.Tensor( |
|
|
[[23.6667, 23.8757, 238.6326, 151.8874]]) |
|
|
gt_instances.labels = torch.LongTensor([2]) |
|
|
one_gt_losses = gfl_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
[gt_instances], img_metas) |
|
|
onegt_cls_loss = sum(one_gt_losses['loss_cls']) |
|
|
onegt_box_loss = sum(one_gt_losses['loss_bbox']) |
|
|
onegt_dfl_loss = sum(one_gt_losses['loss_dfl']) |
|
|
self.assertGreater(onegt_cls_loss.item(), 0, |
|
|
'cls loss should be non-zero') |
|
|
self.assertGreater(onegt_box_loss.item(), 0, |
|
|
'box loss should be non-zero') |
|
|
self.assertGreater(onegt_dfl_loss.item(), 0, |
|
|
'dfl loss should be non-zero') |
|
|
|