Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
import unittest
import torch
from mmengine.config import ConfigDict
from mmengine.structures import InstanceData
from parameterized import parameterized
from mmdet.models.dense_heads import RepPointsHead
from mmdet.structures import DetDataSample
class TestRepPointsHead(unittest.TestCase):
@parameterized.expand(['moment', 'minmax', 'partial_minmax'])
def test_head_loss(self, transform_method='moment'):
cfg = ConfigDict(
dict(
num_classes=2,
in_channels=32,
point_feat_channels=10,
num_points=9,
gradient_mul=0.1,
point_strides=[8, 16, 32, 64, 128],
point_base_scale=4,
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox_init=dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.5),
loss_bbox_refine=dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
use_grid_points=False,
center_init=True,
transform_method=transform_method,
moment_mul=0.01,
init_cfg=dict(
type='Normal',
layer='Conv2d',
std=0.01,
override=dict(
type='Normal',
name='reppoints_cls_out',
std=0.01,
bias_prob=0.01)),
train_cfg=dict(
init=dict(
assigner=dict(
type='PointAssigner', scale=4, pos_num=1),
allowed_border=-1,
pos_weight=-1,
debug=False),
refine=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1),
allowed_border=-1,
pos_weight=-1,
debug=False)),
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100)))
reppoints_head = RepPointsHead(**cfg)
s = 256
img_metas = [{
'img_shape': (s, s),
'scale_factor': (1, 1),
'pad_shape': (s, s),
'batch_input_shape': (s, s)
}]
x = [
torch.rand(1, 32, s // 2**(i + 2), s // 2**(i + 2))
for i in range(5)
]
# Test that empty ground truth encourages the network to
# predict background
gt_instances = InstanceData()
gt_instances.bboxes = torch.empty((0, 4))
gt_instances.labels = torch.LongTensor([])
gt_bboxes_ignore = None
reppoints_head.train()
forward_outputs = reppoints_head.forward(x)
empty_gt_losses = reppoints_head.loss_by_feat(*forward_outputs,
[gt_instances],
img_metas,
gt_bboxes_ignore)
# When there is no truth, the cls loss should be nonzero but there
# should be no pts loss.
for key, losses in empty_gt_losses.items():
for loss in losses:
if 'cls' in key:
self.assertGreater(loss.item(), 0,
'cls loss should be non-zero')
elif 'pts' in key:
self.assertEqual(
loss.item(), 0,
'there should be no reg loss when no ground true boxes'
)
# When truth is non-empty then both cls and pts loss should be nonzero
# for random inputs
gt_instances = InstanceData()
gt_instances.bboxes = torch.Tensor(
[[23.6667, 23.8757, 238.6326, 151.8874]])
gt_instances.labels = torch.LongTensor([2])
one_gt_losses = reppoints_head.loss_by_feat(*forward_outputs,
[gt_instances], img_metas,
gt_bboxes_ignore)
# loss_cls should all be non-zero
self.assertTrue(
all([loss.item() > 0 for loss in one_gt_losses['loss_cls']]))
# only one level loss_pts_init is non-zero
cnt_non_zero = 0
for loss in one_gt_losses['loss_pts_init']:
if loss.item() != 0:
cnt_non_zero += 1
self.assertEqual(cnt_non_zero, 1)
# only one level loss_pts_refine is non-zero
cnt_non_zero = 0
for loss in one_gt_losses['loss_pts_init']:
if loss.item() != 0:
cnt_non_zero += 1
self.assertEqual(cnt_non_zero, 1)
# test loss
samples = DetDataSample()
samples.set_metainfo(img_metas[0])
samples.gt_instances = gt_instances
reppoints_head.loss(x, [samples])
# test only predict
reppoints_head.eval()
reppoints_head.predict(x, [samples], rescale=True)