|
|
|
|
|
from unittest import TestCase |
|
|
|
|
|
import pytest |
|
|
import torch |
|
|
from mmengine import Config |
|
|
from mmengine.structures import InstanceData |
|
|
|
|
|
from mmdet import * |
|
|
from mmdet.models.dense_heads import RPNHead |
|
|
|
|
|
|
|
|
class TestRPNHead(TestCase): |
|
|
|
|
|
def test_init(self): |
|
|
"""Test init rpn head.""" |
|
|
rpn_head = RPNHead(num_classes=1, in_channels=1) |
|
|
self.assertTrue(rpn_head.rpn_conv) |
|
|
self.assertTrue(rpn_head.rpn_cls) |
|
|
self.assertTrue(rpn_head.rpn_reg) |
|
|
|
|
|
|
|
|
rpn_head = RPNHead(num_classes=1, in_channels=1, num_convs=2) |
|
|
self.assertTrue(rpn_head.rpn_conv) |
|
|
self.assertTrue(rpn_head.rpn_cls) |
|
|
self.assertTrue(rpn_head.rpn_reg) |
|
|
|
|
|
def test_rpn_head_loss(self): |
|
|
"""Tests rpn head loss when truth is empty and non-empty.""" |
|
|
s = 256 |
|
|
img_metas = [{ |
|
|
'img_shape': (s, s, 3), |
|
|
'pad_shape': (s, s, 3), |
|
|
'scale_factor': 1, |
|
|
}] |
|
|
|
|
|
cfg = Config( |
|
|
dict( |
|
|
assigner=dict( |
|
|
type='MaxIoUAssigner', |
|
|
pos_iou_thr=0.7, |
|
|
neg_iou_thr=0.3, |
|
|
min_pos_iou=0.3, |
|
|
ignore_iof_thr=-1), |
|
|
sampler=dict( |
|
|
type='RandomSampler', |
|
|
num=256, |
|
|
pos_fraction=0.5, |
|
|
neg_pos_ub=-1, |
|
|
add_gt_as_proposals=False), |
|
|
allowed_border=0, |
|
|
pos_weight=-1, |
|
|
debug=False)) |
|
|
rpn_head = RPNHead(num_classes=1, in_channels=1, train_cfg=cfg) |
|
|
|
|
|
|
|
|
feats = ( |
|
|
torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))) |
|
|
for i in range(len(rpn_head.prior_generator.strides))) |
|
|
cls_scores, bbox_preds = rpn_head.forward(feats) |
|
|
|
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.empty((0, 4)) |
|
|
gt_instances.labels = torch.LongTensor([]) |
|
|
|
|
|
empty_gt_losses = rpn_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
[gt_instances], img_metas) |
|
|
|
|
|
|
|
|
empty_cls_loss = sum(empty_gt_losses['loss_rpn_cls']) |
|
|
empty_box_loss = sum(empty_gt_losses['loss_rpn_bbox']) |
|
|
self.assertGreater(empty_cls_loss.item(), 0, |
|
|
'rpn cls loss should be non-zero') |
|
|
self.assertEqual( |
|
|
empty_box_loss.item(), 0, |
|
|
'there should be no box loss when there are no true boxes') |
|
|
|
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.Tensor( |
|
|
[[23.6667, 23.8757, 238.6326, 151.8874]]) |
|
|
gt_instances.labels = torch.LongTensor([0]) |
|
|
|
|
|
one_gt_losses = rpn_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
[gt_instances], img_metas) |
|
|
onegt_cls_loss = sum(one_gt_losses['loss_rpn_cls']) |
|
|
onegt_box_loss = sum(one_gt_losses['loss_rpn_bbox']) |
|
|
self.assertGreater(onegt_cls_loss.item(), 0, |
|
|
'rpn cls loss should be non-zero') |
|
|
self.assertGreater(onegt_box_loss.item(), 0, |
|
|
'rpn box loss should be non-zero') |
|
|
|
|
|
|
|
|
|
|
|
img_metas = [{ |
|
|
'img_shape': (8, 8, 3), |
|
|
'pad_shape': (8, 8, 3), |
|
|
'scale_factor': 1, |
|
|
}] |
|
|
with pytest.raises(ValueError): |
|
|
rpn_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], |
|
|
img_metas) |
|
|
|
|
|
def test_bbox_post_process(self): |
|
|
"""Test the length of detection instance results is 0.""" |
|
|
from mmengine.config import ConfigDict |
|
|
cfg = ConfigDict( |
|
|
nms_pre=1000, |
|
|
max_per_img=1000, |
|
|
nms=dict(type='nms', iou_threshold=0.7), |
|
|
min_bbox_size=0) |
|
|
|
|
|
rpn_head = RPNHead(num_classes=1, in_channels=1) |
|
|
results = InstanceData(metainfo=dict()) |
|
|
results.bboxes = torch.zeros((0, 4)) |
|
|
results.scores = torch.zeros(0) |
|
|
results = rpn_head._bbox_post_process(results, cfg, img_meta=dict()) |
|
|
self.assertEqual(len(results), 0) |
|
|
self.assertEqual(results.bboxes.size(), (0, 4)) |
|
|
self.assertEqual(results.scores.size(), (0, )) |
|
|
self.assertEqual(results.labels.size(), (0, )) |
|
|
|