Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import pytest
import torch
from mmengine import Config
from mmengine.structures import InstanceData
from mmdet import * # noqa
from mmdet.models.dense_heads import RPNHead
class TestRPNHead(TestCase):
def test_init(self):
"""Test init rpn head."""
rpn_head = RPNHead(num_classes=1, in_channels=1)
self.assertTrue(rpn_head.rpn_conv)
self.assertTrue(rpn_head.rpn_cls)
self.assertTrue(rpn_head.rpn_reg)
# rpn_head.num_convs > 1
rpn_head = RPNHead(num_classes=1, in_channels=1, num_convs=2)
self.assertTrue(rpn_head.rpn_conv)
self.assertTrue(rpn_head.rpn_cls)
self.assertTrue(rpn_head.rpn_reg)
def test_rpn_head_loss(self):
"""Tests rpn head loss when truth is empty and non-empty."""
s = 256
img_metas = [{
'img_shape': (s, s, 3),
'pad_shape': (s, s, 3),
'scale_factor': 1,
}]
cfg = Config(
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False))
rpn_head = RPNHead(num_classes=1, in_channels=1, train_cfg=cfg)
# Anchor head expects a multiple levels of features per image
feats = (
torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2)))
for i in range(len(rpn_head.prior_generator.strides)))
cls_scores, bbox_preds = rpn_head.forward(feats)
# Test that empty ground truth encourages the network to
# predict background
gt_instances = InstanceData()
gt_instances.bboxes = torch.empty((0, 4))
gt_instances.labels = torch.LongTensor([])
empty_gt_losses = rpn_head.loss_by_feat(cls_scores, bbox_preds,
[gt_instances], img_metas)
# When there is no truth, the cls loss should be nonzero but
# there should be no box loss.
empty_cls_loss = sum(empty_gt_losses['loss_rpn_cls'])
empty_box_loss = sum(empty_gt_losses['loss_rpn_bbox'])
self.assertGreater(empty_cls_loss.item(), 0,
'rpn cls loss should be non-zero')
self.assertEqual(
empty_box_loss.item(), 0,
'there should be no box loss when there are no true boxes')
# When truth is non-empty then both cls and box loss
# should be nonzero for random inputs
gt_instances = InstanceData()
gt_instances.bboxes = torch.Tensor(
[[23.6667, 23.8757, 238.6326, 151.8874]])
gt_instances.labels = torch.LongTensor([0])
one_gt_losses = rpn_head.loss_by_feat(cls_scores, bbox_preds,
[gt_instances], img_metas)
onegt_cls_loss = sum(one_gt_losses['loss_rpn_cls'])
onegt_box_loss = sum(one_gt_losses['loss_rpn_bbox'])
self.assertGreater(onegt_cls_loss.item(), 0,
'rpn cls loss should be non-zero')
self.assertGreater(onegt_box_loss.item(), 0,
'rpn box loss should be non-zero')
# When there is no valid anchor, the loss will be None,
# and this will raise a ValueError.
img_metas = [{
'img_shape': (8, 8, 3),
'pad_shape': (8, 8, 3),
'scale_factor': 1,
}]
with pytest.raises(ValueError):
rpn_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances],
img_metas)
def test_bbox_post_process(self):
"""Test the length of detection instance results is 0."""
from mmengine.config import ConfigDict
cfg = ConfigDict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0)
rpn_head = RPNHead(num_classes=1, in_channels=1)
results = InstanceData(metainfo=dict())
results.bboxes = torch.zeros((0, 4))
results.scores = torch.zeros(0)
results = rpn_head._bbox_post_process(results, cfg, img_meta=dict())
self.assertEqual(len(results), 0)
self.assertEqual(results.bboxes.size(), (0, 4))
self.assertEqual(results.scores.size(), (0, ))
self.assertEqual(results.labels.size(), (0, ))