|
|
|
|
|
from unittest import TestCase |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
from mmengine.config import ConfigDict |
|
|
from mmengine.structures import InstanceData |
|
|
from parameterized import parameterized |
|
|
|
|
|
from mmdet import * |
|
|
from mmdet.models.dense_heads import (DecoupledSOLOHead, |
|
|
DecoupledSOLOLightHead, SOLOHead) |
|
|
from mmdet.structures.mask import BitmapMasks |
|
|
|
|
|
|
|
|
def _rand_masks(num_items, bboxes, img_w, img_h): |
|
|
rng = np.random.RandomState(0) |
|
|
masks = np.zeros((num_items, img_h, img_w)) |
|
|
for i, bbox in enumerate(bboxes): |
|
|
bbox = bbox.astype(np.int32) |
|
|
mask = (rng.rand(1, bbox[3] - bbox[1], bbox[2] - bbox[0]) > |
|
|
0.3).astype(np.int64) |
|
|
masks[i:i + 1, bbox[1]:bbox[3], bbox[0]:bbox[2]] = mask |
|
|
return BitmapMasks(masks, height=img_h, width=img_w) |
|
|
|
|
|
|
|
|
class TestSOLOHead(TestCase): |
|
|
|
|
|
@parameterized.expand([(SOLOHead, ), (DecoupledSOLOHead, ), |
|
|
(DecoupledSOLOLightHead, )]) |
|
|
def test_mask_head_loss(self, MaskHead): |
|
|
"""Tests mask head loss when truth is empty and non-empty.""" |
|
|
s = 256 |
|
|
img_metas = [{ |
|
|
'img_shape': (s, s, 3), |
|
|
'ori_shape': (s, s, 3), |
|
|
'scale_factor': 1, |
|
|
'batch_input_shape': (s, s, 3) |
|
|
}] |
|
|
|
|
|
mask_head = MaskHead(num_classes=4, in_channels=1) |
|
|
|
|
|
|
|
|
feats = [] |
|
|
for i in range(len(mask_head.strides)): |
|
|
feats.append( |
|
|
torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2)))) |
|
|
feats = tuple(feats) |
|
|
|
|
|
mask_outs = mask_head.forward(feats) |
|
|
|
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.empty(0, 4) |
|
|
gt_instances.labels = torch.LongTensor([]) |
|
|
gt_instances.masks = _rand_masks(0, gt_instances.bboxes.numpy(), s, s) |
|
|
|
|
|
empty_gt_losses = mask_head.loss_by_feat( |
|
|
*mask_outs, |
|
|
batch_gt_instances=[gt_instances], |
|
|
batch_img_metas=img_metas) |
|
|
|
|
|
|
|
|
empty_cls_loss = empty_gt_losses['loss_cls'] |
|
|
empty_mask_loss = empty_gt_losses['loss_mask'] |
|
|
self.assertGreater(empty_cls_loss.item(), 0, |
|
|
'cls loss should be non-zero') |
|
|
self.assertEqual( |
|
|
empty_mask_loss.item(), 0, |
|
|
'there should be no mask loss when there are no true mask') |
|
|
|
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.Tensor( |
|
|
[[23.6667, 23.8757, 238.6326, 151.8874]]) |
|
|
gt_instances.labels = torch.LongTensor([2]) |
|
|
gt_instances.masks = _rand_masks(1, gt_instances.bboxes.numpy(), s, s) |
|
|
|
|
|
one_gt_losses = mask_head.loss_by_feat( |
|
|
*mask_outs, |
|
|
batch_gt_instances=[gt_instances], |
|
|
batch_img_metas=img_metas) |
|
|
onegt_cls_loss = one_gt_losses['loss_cls'] |
|
|
onegt_mask_loss = one_gt_losses['loss_mask'] |
|
|
self.assertGreater(onegt_cls_loss.item(), 0, |
|
|
'cls loss should be non-zero') |
|
|
self.assertGreater(onegt_mask_loss.item(), 0, |
|
|
'mask loss should be non-zero') |
|
|
|
|
|
def test_solo_head_empty_result(self): |
|
|
s = 256 |
|
|
img_metas = { |
|
|
'img_shape': (s, s, 3), |
|
|
'ori_shape': (s, s, 3), |
|
|
'scale_factor': 1, |
|
|
'batch_input_shape': (s, s, 3) |
|
|
} |
|
|
|
|
|
mask_head = SOLOHead(num_classes=4, in_channels=1) |
|
|
|
|
|
cls_scores = torch.empty(0, 80) |
|
|
mask_preds = torch.empty(0, 16, 16) |
|
|
test_cfg = ConfigDict( |
|
|
score_thr=0.1, |
|
|
mask_thr=0.5, |
|
|
) |
|
|
results = mask_head._predict_by_feat_single( |
|
|
cls_scores=cls_scores, |
|
|
mask_preds=mask_preds, |
|
|
img_meta=img_metas, |
|
|
cfg=test_cfg) |
|
|
|
|
|
self.assertIsInstance(results, InstanceData) |
|
|
self.assertEqual(len(results), 0) |
|
|
|
|
|
def test_decoupled_solo_head_empty_result(self): |
|
|
s = 256 |
|
|
img_metas = { |
|
|
'img_shape': (s, s, 3), |
|
|
'ori_shape': (s, s, 3), |
|
|
'scale_factor': 1, |
|
|
'batch_input_shape': (s, s, 3) |
|
|
} |
|
|
|
|
|
mask_head = DecoupledSOLOHead(num_classes=4, in_channels=1) |
|
|
|
|
|
cls_scores = torch.empty(0, 80) |
|
|
mask_preds_x = torch.empty(0, 16, 16) |
|
|
mask_preds_y = torch.empty(0, 16, 16) |
|
|
test_cfg = ConfigDict( |
|
|
score_thr=0.1, |
|
|
mask_thr=0.5, |
|
|
) |
|
|
results = mask_head._predict_by_feat_single( |
|
|
cls_scores=cls_scores, |
|
|
mask_preds_x=mask_preds_x, |
|
|
mask_preds_y=mask_preds_y, |
|
|
img_meta=img_metas, |
|
|
cfg=test_cfg) |
|
|
|
|
|
self.assertIsInstance(results, InstanceData) |
|
|
self.assertEqual(len(results), 0) |
|
|
|