|
|
|
|
|
from unittest import TestCase |
|
|
|
|
|
import torch |
|
|
from mmengine import Config, MessageHub |
|
|
from mmengine.structures import InstanceData |
|
|
|
|
|
from mmdet import * |
|
|
from mmdet.models.dense_heads import TOODHead |
|
|
|
|
|
|
|
|
def _tood_head(anchor_type): |
|
|
"""Set type of tood head.""" |
|
|
train_cfg = Config( |
|
|
dict( |
|
|
initial_epoch=4, |
|
|
initial_assigner=dict(type='ATSSAssigner', topk=9), |
|
|
assigner=dict(type='TaskAlignedAssigner', topk=13), |
|
|
alpha=1, |
|
|
beta=6, |
|
|
allowed_border=-1, |
|
|
pos_weight=-1, |
|
|
debug=False)) |
|
|
test_cfg = Config( |
|
|
dict( |
|
|
nms_pre=1000, |
|
|
min_bbox_size=0, |
|
|
score_thr=0.05, |
|
|
nms=dict(type='nms', iou_threshold=0.6), |
|
|
max_per_img=100)) |
|
|
|
|
|
tood_head = TOODHead( |
|
|
num_classes=80, |
|
|
in_channels=1, |
|
|
stacked_convs=1, |
|
|
feat_channels=8, |
|
|
norm_cfg=None, |
|
|
anchor_type=anchor_type, |
|
|
anchor_generator=dict( |
|
|
type='AnchorGenerator', |
|
|
ratios=[1.0], |
|
|
octave_base_scale=8, |
|
|
scales_per_octave=1, |
|
|
strides=[8, 16, 32, 64, 128]), |
|
|
bbox_coder=dict( |
|
|
type='DeltaXYWHBBoxCoder', |
|
|
target_means=[.0, .0, .0, .0], |
|
|
target_stds=[0.1, 0.1, 0.2, 0.2]), |
|
|
initial_loss_cls=dict( |
|
|
type='FocalLoss', |
|
|
use_sigmoid=True, |
|
|
activated=True, |
|
|
gamma=2.0, |
|
|
alpha=0.25, |
|
|
loss_weight=1.0), |
|
|
loss_cls=dict( |
|
|
type='QualityFocalLoss', |
|
|
use_sigmoid=True, |
|
|
activated=True, |
|
|
beta=2.0, |
|
|
loss_weight=1.0), |
|
|
loss_bbox=dict(type='GIoULoss', loss_weight=2.0), |
|
|
train_cfg=train_cfg, |
|
|
test_cfg=test_cfg) |
|
|
return tood_head |
|
|
|
|
|
|
|
|
class TestTOODHead(TestCase): |
|
|
|
|
|
def test_tood_head_anchor_free_loss(self): |
|
|
"""Tests tood head loss when truth is empty and non-empty.""" |
|
|
s = 256 |
|
|
img_metas = [{ |
|
|
'img_shape': (s, s, 3), |
|
|
'pad_shape': (s, s, 3), |
|
|
'scale_factor': 1 |
|
|
}] |
|
|
tood_head = _tood_head('anchor_free') |
|
|
tood_head.init_weights() |
|
|
feat = [ |
|
|
torch.rand(1, 1, s // feat_size, s // feat_size) |
|
|
for feat_size in [8, 16, 32, 64, 128] |
|
|
] |
|
|
cls_scores, bbox_preds = tood_head(feat) |
|
|
|
|
|
message_hub = MessageHub.get_instance('runtime_info') |
|
|
message_hub.update_info('epoch', 0) |
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.empty((0, 4)) |
|
|
gt_instances.labels = torch.LongTensor([]) |
|
|
gt_bboxes_ignore = None |
|
|
empty_gt_losses = tood_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
[gt_instances], img_metas, |
|
|
gt_bboxes_ignore) |
|
|
|
|
|
|
|
|
empty_cls_loss = empty_gt_losses['loss_cls'] |
|
|
empty_box_loss = empty_gt_losses['loss_bbox'] |
|
|
self.assertGreater( |
|
|
sum(empty_cls_loss).item(), 0, 'cls loss should be non-zero') |
|
|
self.assertEqual( |
|
|
sum(empty_box_loss).item(), 0, |
|
|
'there should be no box loss when there are no true boxes') |
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.Tensor( |
|
|
[[23.6667, 23.8757, 238.6326, 151.8874]]) |
|
|
gt_instances.labels = torch.LongTensor([2]) |
|
|
gt_bboxes_ignore = None |
|
|
one_gt_losses = tood_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
[gt_instances], img_metas, |
|
|
gt_bboxes_ignore) |
|
|
onegt_cls_loss = one_gt_losses['loss_cls'] |
|
|
onegt_box_loss = one_gt_losses['loss_bbox'] |
|
|
self.assertGreater( |
|
|
sum(onegt_cls_loss).item(), 0, 'cls loss should be non-zero') |
|
|
self.assertGreater( |
|
|
sum(onegt_box_loss).item(), 0, 'box loss should be non-zero') |
|
|
|
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.empty((0, 4)) |
|
|
gt_instances.labels = torch.LongTensor([]) |
|
|
gt_bboxes_ignore = None |
|
|
empty_gt_losses = tood_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
[gt_instances], img_metas, |
|
|
gt_bboxes_ignore) |
|
|
|
|
|
|
|
|
empty_cls_loss = empty_gt_losses['loss_cls'] |
|
|
empty_box_loss = empty_gt_losses['loss_bbox'] |
|
|
self.assertGreater( |
|
|
sum(empty_cls_loss).item(), 0, 'cls loss should be non-zero') |
|
|
self.assertEqual( |
|
|
sum(empty_box_loss).item(), 0, |
|
|
'there should be no box loss when there are no true boxes') |
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.Tensor( |
|
|
[[23.6667, 23.8757, 238.6326, 151.8874]]) |
|
|
gt_instances.labels = torch.LongTensor([2]) |
|
|
gt_bboxes_ignore = None |
|
|
one_gt_losses = tood_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
[gt_instances], img_metas, |
|
|
gt_bboxes_ignore) |
|
|
onegt_cls_loss = one_gt_losses['loss_cls'] |
|
|
onegt_box_loss = one_gt_losses['loss_bbox'] |
|
|
self.assertGreater( |
|
|
sum(onegt_cls_loss).item(), 0, 'cls loss should be non-zero') |
|
|
self.assertGreater( |
|
|
sum(onegt_box_loss).item(), 0, 'box loss should be non-zero') |
|
|
|
|
|
def test_tood_head_anchor_based_loss(self): |
|
|
"""Tests tood head loss when truth is empty and non-empty.""" |
|
|
s = 256 |
|
|
img_metas = [{ |
|
|
'img_shape': (s, s, 3), |
|
|
'pad_shape': (s, s, 3), |
|
|
'scale_factor': 1 |
|
|
}] |
|
|
tood_head = _tood_head('anchor_based') |
|
|
tood_head.init_weights() |
|
|
feat = [ |
|
|
torch.rand(1, 1, s // feat_size, s // feat_size) |
|
|
for feat_size in [8, 16, 32, 64, 128] |
|
|
] |
|
|
cls_scores, bbox_preds = tood_head(feat) |
|
|
|
|
|
message_hub = MessageHub.get_instance('runtime_info') |
|
|
message_hub.update_info('epoch', 0) |
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.empty((0, 4)) |
|
|
gt_instances.labels = torch.LongTensor([]) |
|
|
gt_bboxes_ignore = None |
|
|
empty_gt_losses = tood_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
[gt_instances], img_metas, |
|
|
gt_bboxes_ignore) |
|
|
|
|
|
|
|
|
empty_cls_loss = empty_gt_losses['loss_cls'] |
|
|
empty_box_loss = empty_gt_losses['loss_bbox'] |
|
|
self.assertGreater( |
|
|
sum(empty_cls_loss).item(), 0, 'cls loss should be non-zero') |
|
|
self.assertEqual( |
|
|
sum(empty_box_loss).item(), 0, |
|
|
'there should be no box loss when there are no true boxes') |
|
|
|