Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import torch
from mmengine import Config, MessageHub
from mmengine.structures import InstanceData
from mmdet import * # noqa
from mmdet.models.dense_heads import TOODHead
def _tood_head(anchor_type):
"""Set type of tood head."""
train_cfg = Config(
dict(
initial_epoch=4,
initial_assigner=dict(type='ATSSAssigner', topk=9),
assigner=dict(type='TaskAlignedAssigner', topk=13),
alpha=1,
beta=6,
allowed_border=-1,
pos_weight=-1,
debug=False))
test_cfg = Config(
dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.6),
max_per_img=100))
tood_head = TOODHead(
num_classes=80,
in_channels=1,
stacked_convs=1,
feat_channels=8, # the same as `la_down_rate` in TaskDecomposition
norm_cfg=None,
anchor_type=anchor_type,
anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
octave_base_scale=8,
scales_per_octave=1,
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
initial_loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
activated=True, # use probability instead of logit as input
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_cls=dict(
type='QualityFocalLoss',
use_sigmoid=True,
activated=True, # use probability instead of logit as input
beta=2.0,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
train_cfg=train_cfg,
test_cfg=test_cfg)
return tood_head
class TestTOODHead(TestCase):
def test_tood_head_anchor_free_loss(self):
"""Tests tood head loss when truth is empty and non-empty."""
s = 256
img_metas = [{
'img_shape': (s, s, 3),
'pad_shape': (s, s, 3),
'scale_factor': 1
}]
tood_head = _tood_head('anchor_free')
tood_head.init_weights()
feat = [
torch.rand(1, 1, s // feat_size, s // feat_size)
for feat_size in [8, 16, 32, 64, 128]
]
cls_scores, bbox_preds = tood_head(feat)
message_hub = MessageHub.get_instance('runtime_info')
message_hub.update_info('epoch', 0)
# Test that empty ground truth encourages the network to predict
# background
gt_instances = InstanceData()
gt_instances.bboxes = torch.empty((0, 4))
gt_instances.labels = torch.LongTensor([])
gt_bboxes_ignore = None
empty_gt_losses = tood_head.loss_by_feat(cls_scores, bbox_preds,
[gt_instances], img_metas,
gt_bboxes_ignore)
# When there is no truth, the cls loss should be nonzero but there
# should be no box loss.
empty_cls_loss = empty_gt_losses['loss_cls']
empty_box_loss = empty_gt_losses['loss_bbox']
self.assertGreater(
sum(empty_cls_loss).item(), 0, 'cls loss should be non-zero')
self.assertEqual(
sum(empty_box_loss).item(), 0,
'there should be no box loss when there are no true boxes')
# When truth is non-empty then both cls and box loss should be nonzero
# for random inputs
gt_instances = InstanceData()
gt_instances.bboxes = torch.Tensor(
[[23.6667, 23.8757, 238.6326, 151.8874]])
gt_instances.labels = torch.LongTensor([2])
gt_bboxes_ignore = None
one_gt_losses = tood_head.loss_by_feat(cls_scores, bbox_preds,
[gt_instances], img_metas,
gt_bboxes_ignore)
onegt_cls_loss = one_gt_losses['loss_cls']
onegt_box_loss = one_gt_losses['loss_bbox']
self.assertGreater(
sum(onegt_cls_loss).item(), 0, 'cls loss should be non-zero')
self.assertGreater(
sum(onegt_box_loss).item(), 0, 'box loss should be non-zero')
# Test that empty ground truth encourages the network to predict
# background
gt_instances = InstanceData()
gt_instances.bboxes = torch.empty((0, 4))
gt_instances.labels = torch.LongTensor([])
gt_bboxes_ignore = None
empty_gt_losses = tood_head.loss_by_feat(cls_scores, bbox_preds,
[gt_instances], img_metas,
gt_bboxes_ignore)
# When there is no truth, the cls loss should be nonzero but there
# should be no box loss.
empty_cls_loss = empty_gt_losses['loss_cls']
empty_box_loss = empty_gt_losses['loss_bbox']
self.assertGreater(
sum(empty_cls_loss).item(), 0, 'cls loss should be non-zero')
self.assertEqual(
sum(empty_box_loss).item(), 0,
'there should be no box loss when there are no true boxes')
# When truth is non-empty then both cls and box loss should be nonzero
# for random inputs
gt_instances = InstanceData()
gt_instances.bboxes = torch.Tensor(
[[23.6667, 23.8757, 238.6326, 151.8874]])
gt_instances.labels = torch.LongTensor([2])
gt_bboxes_ignore = None
one_gt_losses = tood_head.loss_by_feat(cls_scores, bbox_preds,
[gt_instances], img_metas,
gt_bboxes_ignore)
onegt_cls_loss = one_gt_losses['loss_cls']
onegt_box_loss = one_gt_losses['loss_bbox']
self.assertGreater(
sum(onegt_cls_loss).item(), 0, 'cls loss should be non-zero')
self.assertGreater(
sum(onegt_box_loss).item(), 0, 'box loss should be non-zero')
def test_tood_head_anchor_based_loss(self):
"""Tests tood head loss when truth is empty and non-empty."""
s = 256
img_metas = [{
'img_shape': (s, s, 3),
'pad_shape': (s, s, 3),
'scale_factor': 1
}]
tood_head = _tood_head('anchor_based')
tood_head.init_weights()
feat = [
torch.rand(1, 1, s // feat_size, s // feat_size)
for feat_size in [8, 16, 32, 64, 128]
]
cls_scores, bbox_preds = tood_head(feat)
message_hub = MessageHub.get_instance('runtime_info')
message_hub.update_info('epoch', 0)
# Test that empty ground truth encourages the network to predict
# background
gt_instances = InstanceData()
gt_instances.bboxes = torch.empty((0, 4))
gt_instances.labels = torch.LongTensor([])
gt_bboxes_ignore = None
empty_gt_losses = tood_head.loss_by_feat(cls_scores, bbox_preds,
[gt_instances], img_metas,
gt_bboxes_ignore)
# When there is no truth, the cls loss should be nonzero but there
# should be no box loss.
empty_cls_loss = empty_gt_losses['loss_cls']
empty_box_loss = empty_gt_losses['loss_bbox']
self.assertGreater(
sum(empty_cls_loss).item(), 0, 'cls loss should be non-zero')
self.assertEqual(
sum(empty_box_loss).item(), 0,
'there should be no box loss when there are no true boxes')