Saurabh1105's picture
MMdet Model for Image Segmentation
6c9ac8f
# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import torch
from mmengine import Config
from mmengine.structures import InstanceData
from mmdet import * # noqa
from mmdet.models.dense_heads import YOLOFHead
class TestYOLOFHead(TestCase):
def test_yolof_head_loss(self):
"""Tests yolof head loss when truth is empty and non-empty."""
s = 256
img_metas = [{
'img_shape': (s, s, 3),
'scale_factor': 1,
'pad_shape': (s, s, 3)
}]
train_cfg = Config(
dict(
assigner=dict(
type='UniformAssigner',
pos_ignore_thr=0.15,
neg_ignore_thr=0.7),
allowed_border=-1,
pos_weight=-1,
debug=False))
yolof_head = YOLOFHead(
num_classes=4,
in_channels=1,
feat_channels=1,
reg_decoded_bbox=True,
train_cfg=train_cfg,
anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
scales=[1, 2, 4, 8, 16],
strides=[32]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1., 1., 1., 1.],
add_ctr_clamp=True,
ctr_clamp=32),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=1.0))
feat = [torch.rand(1, 1, s // 32, s // 32)]
cls_scores, bbox_preds = yolof_head.forward(feat)
# Test that empty ground truth encourages the network to predict
# background
gt_instances = InstanceData()
gt_instances.bboxes = torch.empty((0, 4))
gt_instances.labels = torch.LongTensor([])
empty_gt_losses = yolof_head.loss_by_feat(cls_scores, bbox_preds,
[gt_instances], img_metas)
# When there is no truth, the cls loss should be nonzero but there
# should be no box loss.
empty_cls_loss = empty_gt_losses['loss_cls']
empty_box_loss = empty_gt_losses['loss_bbox']
self.assertGreater(empty_cls_loss.item(), 0,
'cls loss should be non-zero')
self.assertEqual(
empty_box_loss.item(), 0,
'there should be no box loss when there are no true boxes')
# When truth is non-empty then both cls and box loss should be nonzero
# for random inputs
gt_instances = InstanceData()
gt_instances.bboxes = torch.Tensor(
[[23.6667, 23.8757, 238.6326, 151.8874]])
gt_instances.labels = torch.LongTensor([2])
one_gt_losses = yolof_head.loss_by_feat(cls_scores, bbox_preds,
[gt_instances], img_metas)
onegt_cls_loss = one_gt_losses['loss_cls']
onegt_box_loss = one_gt_losses['loss_bbox']
self.assertGreater(onegt_cls_loss.item(), 0,
'cls loss should be non-zero')
self.assertGreater(onegt_box_loss.item(), 0,
'box loss should be non-zero')