|
|
|
|
|
from unittest import TestCase |
|
|
|
|
|
import torch |
|
|
from mmengine import Config |
|
|
from mmengine.structures import InstanceData |
|
|
|
|
|
from mmdet import * |
|
|
from mmdet.models.dense_heads import YOLOFHead |
|
|
|
|
|
|
|
|
class TestYOLOFHead(TestCase): |
|
|
|
|
|
def test_yolof_head_loss(self): |
|
|
"""Tests yolof head loss when truth is empty and non-empty.""" |
|
|
s = 256 |
|
|
img_metas = [{ |
|
|
'img_shape': (s, s, 3), |
|
|
'scale_factor': 1, |
|
|
'pad_shape': (s, s, 3) |
|
|
}] |
|
|
train_cfg = Config( |
|
|
dict( |
|
|
assigner=dict( |
|
|
type='UniformAssigner', |
|
|
pos_ignore_thr=0.15, |
|
|
neg_ignore_thr=0.7), |
|
|
allowed_border=-1, |
|
|
pos_weight=-1, |
|
|
debug=False)) |
|
|
yolof_head = YOLOFHead( |
|
|
num_classes=4, |
|
|
in_channels=1, |
|
|
feat_channels=1, |
|
|
reg_decoded_bbox=True, |
|
|
train_cfg=train_cfg, |
|
|
anchor_generator=dict( |
|
|
type='AnchorGenerator', |
|
|
ratios=[1.0], |
|
|
scales=[1, 2, 4, 8, 16], |
|
|
strides=[32]), |
|
|
bbox_coder=dict( |
|
|
type='DeltaXYWHBBoxCoder', |
|
|
target_means=[.0, .0, .0, .0], |
|
|
target_stds=[1., 1., 1., 1.], |
|
|
add_ctr_clamp=True, |
|
|
ctr_clamp=32), |
|
|
loss_cls=dict( |
|
|
type='FocalLoss', |
|
|
use_sigmoid=True, |
|
|
gamma=2.0, |
|
|
alpha=0.25, |
|
|
loss_weight=1.0), |
|
|
loss_bbox=dict(type='GIoULoss', loss_weight=1.0)) |
|
|
feat = [torch.rand(1, 1, s // 32, s // 32)] |
|
|
cls_scores, bbox_preds = yolof_head.forward(feat) |
|
|
|
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.empty((0, 4)) |
|
|
gt_instances.labels = torch.LongTensor([]) |
|
|
empty_gt_losses = yolof_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
[gt_instances], img_metas) |
|
|
|
|
|
|
|
|
empty_cls_loss = empty_gt_losses['loss_cls'] |
|
|
empty_box_loss = empty_gt_losses['loss_bbox'] |
|
|
self.assertGreater(empty_cls_loss.item(), 0, |
|
|
'cls loss should be non-zero') |
|
|
self.assertEqual( |
|
|
empty_box_loss.item(), 0, |
|
|
'there should be no box loss when there are no true boxes') |
|
|
|
|
|
|
|
|
|
|
|
gt_instances = InstanceData() |
|
|
gt_instances.bboxes = torch.Tensor( |
|
|
[[23.6667, 23.8757, 238.6326, 151.8874]]) |
|
|
gt_instances.labels = torch.LongTensor([2]) |
|
|
one_gt_losses = yolof_head.loss_by_feat(cls_scores, bbox_preds, |
|
|
[gt_instances], img_metas) |
|
|
onegt_cls_loss = one_gt_losses['loss_cls'] |
|
|
onegt_box_loss = one_gt_losses['loss_bbox'] |
|
|
self.assertGreater(onegt_cls_loss.item(), 0, |
|
|
'cls loss should be non-zero') |
|
|
self.assertGreater(onegt_box_loss.item(), 0, |
|
|
'box loss should be non-zero') |
|
|
|